Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storm runoff and sewage treatment outflow contaminated with household pesticides

03.02.2010
Pyrethroids, among the most widely-used home pesticides, are winding up in California rivers at levels toxic to some stream-dwellers, possibly endangering the food supply of fish and other aquatic animals, according to a new study by researchers at the University of California, Berkeley, and Southern Illinois University (SIU).

Pyrethroid insecticides, commonly used in California to kill ants and other insect pests around the home, have been found in street runoff and in the outflow from sewage treatment plants in the Sacramento area. The insecticide ended up in two urban creeks, the San Joaquin River and a 20-mile stretch of the American River, traditionally considered to be one of the cleanest rivers in the region.

Although the pyrethroid levels were low – around 10-20 parts per trillion – they were high enough to kill a test organism similar to a small shrimp that is used to assess water safety.

"These indicator organisms are 'lab rat' species that are very sensitive, but if you find something that is toxic to them, it should be a red flag that there could be potential toxicity to resident organisms in the stream," said study leader Donald P. Weston, UC Berkeley adjunct professor of integrative biology.

Fish would not be affected by such low levels, Weston said, but aquatic larvae that the fish eat, such as the larvae of mayflies, stoneflies and caddisflies, could be, and should be studied.

Weston first began looking at pyrethroid levels in streams bordering farm fields in 2004, and reported levels in some creek sediments high enough to kill the shrimp-like amphipod, an organism used by the U.S. Environmental Protection Agency as an indicator of the health of freshwater sediment. He subsequently found even higher pyrethroid levels in the sediments of urban streams, contributing to the California Department of Pesticide Regulation’s decision in August 2006 to re-evaluate some 600 pyrethroid products on the market, a process that is still underway.

The new study is the first published work to document toxic levels in the water column as well as in the sediments at the bottom of streams.

"This work opens a whole new can of worms and will probably substantially expand that re-evaluation," Weston said.

Weston's study, conducted with Michael J. Lydy (LIE-dee) of SIU in Carbondale and funded by the Surface Water Ambient Monitoring Program of the California Environmental Protection Agency, appears online today (Tuesday, Feb. 2) in the journal Environmental Science & Technology.

Pyrethroids have been around for decades, but seldom were used until organophosphates like chlorpyrifos and diazinon were banned for homeowner use in 2001 and 2004, respectively. Since then, pyrethroid insecticide use has skyrocketed, while studies in urban streams have found levels toxic to sensitive "indicator" species in California's Central Valley as well as in Texas and Illinois. The crustacean Hyalella azteca, for example, is paralyzed and killed at levels of 2 parts per trillion.

The main sources appear to be readily available insecticides applied around the home by the homeowner or by professional pest control firms to control pesky ants, Weston said. Of the varieties of pyrethroids marketed, however, one – bifenthrin – was found most often in the rivers and creeks in the Sacramento area, and pest control companies in California use four times as much as homeowners do, he said.

He noted that in some areas, pest control companies heavily market monthly or bimonthly sprayings outside the home to control ants.

"I question whether most people need routine insecticide treatment of their property, which results in residues on the lawn, in the garden and around the house that, when it rains, go down the storm drains and out into the creeks and rivers," Weston said. "Average homeowners, when they hire pest control companies to regularly spray their property to cut down on ants, don't realize that those same compounds end up in the American River at toxic levels."

The study found, surprisingly, that pyrethroids were present in effluent from sewage treatment plants at concentrations just high enough to be toxic to the test organisms, but well below levels found in urban runoff. Farm runoff, however, only occasionally contained pyrethroids at toxic levels, although some agricultural runoff did contain toxic levels of organophosphate insecticides.

The new study was conducted in the Sacramento-San Joaquin Delta area last winter, one of the driest in the past 10 years. As a result, water flow in the American River, which is controlled by dam releases, was at very low levels, and provided little dilution of pyrethroids entering the river in storm runoff. Preliminary tests this season, with water flow twice what it was in 2009, show that "the pyrethroid toxicity we found last year is somewhat diminished, but nevertheless still continuing," Weston said.

The paper, "Urban and Agricultural Sources of Pyrethroid Insecticides to the Sacramento-San Joaquin Delta of California," is online at Environmental Science & Technology.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>