Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Storm runoff and sewage treatment outflow contaminated with household pesticides

Pyrethroids, among the most widely-used home pesticides, are winding up in California rivers at levels toxic to some stream-dwellers, possibly endangering the food supply of fish and other aquatic animals, according to a new study by researchers at the University of California, Berkeley, and Southern Illinois University (SIU).

Pyrethroid insecticides, commonly used in California to kill ants and other insect pests around the home, have been found in street runoff and in the outflow from sewage treatment plants in the Sacramento area. The insecticide ended up in two urban creeks, the San Joaquin River and a 20-mile stretch of the American River, traditionally considered to be one of the cleanest rivers in the region.

Although the pyrethroid levels were low – around 10-20 parts per trillion – they were high enough to kill a test organism similar to a small shrimp that is used to assess water safety.

"These indicator organisms are 'lab rat' species that are very sensitive, but if you find something that is toxic to them, it should be a red flag that there could be potential toxicity to resident organisms in the stream," said study leader Donald P. Weston, UC Berkeley adjunct professor of integrative biology.

Fish would not be affected by such low levels, Weston said, but aquatic larvae that the fish eat, such as the larvae of mayflies, stoneflies and caddisflies, could be, and should be studied.

Weston first began looking at pyrethroid levels in streams bordering farm fields in 2004, and reported levels in some creek sediments high enough to kill the shrimp-like amphipod, an organism used by the U.S. Environmental Protection Agency as an indicator of the health of freshwater sediment. He subsequently found even higher pyrethroid levels in the sediments of urban streams, contributing to the California Department of Pesticide Regulation’s decision in August 2006 to re-evaluate some 600 pyrethroid products on the market, a process that is still underway.

The new study is the first published work to document toxic levels in the water column as well as in the sediments at the bottom of streams.

"This work opens a whole new can of worms and will probably substantially expand that re-evaluation," Weston said.

Weston's study, conducted with Michael J. Lydy (LIE-dee) of SIU in Carbondale and funded by the Surface Water Ambient Monitoring Program of the California Environmental Protection Agency, appears online today (Tuesday, Feb. 2) in the journal Environmental Science & Technology.

Pyrethroids have been around for decades, but seldom were used until organophosphates like chlorpyrifos and diazinon were banned for homeowner use in 2001 and 2004, respectively. Since then, pyrethroid insecticide use has skyrocketed, while studies in urban streams have found levels toxic to sensitive "indicator" species in California's Central Valley as well as in Texas and Illinois. The crustacean Hyalella azteca, for example, is paralyzed and killed at levels of 2 parts per trillion.

The main sources appear to be readily available insecticides applied around the home by the homeowner or by professional pest control firms to control pesky ants, Weston said. Of the varieties of pyrethroids marketed, however, one – bifenthrin – was found most often in the rivers and creeks in the Sacramento area, and pest control companies in California use four times as much as homeowners do, he said.

He noted that in some areas, pest control companies heavily market monthly or bimonthly sprayings outside the home to control ants.

"I question whether most people need routine insecticide treatment of their property, which results in residues on the lawn, in the garden and around the house that, when it rains, go down the storm drains and out into the creeks and rivers," Weston said. "Average homeowners, when they hire pest control companies to regularly spray their property to cut down on ants, don't realize that those same compounds end up in the American River at toxic levels."

The study found, surprisingly, that pyrethroids were present in effluent from sewage treatment plants at concentrations just high enough to be toxic to the test organisms, but well below levels found in urban runoff. Farm runoff, however, only occasionally contained pyrethroids at toxic levels, although some agricultural runoff did contain toxic levels of organophosphate insecticides.

The new study was conducted in the Sacramento-San Joaquin Delta area last winter, one of the driest in the past 10 years. As a result, water flow in the American River, which is controlled by dam releases, was at very low levels, and provided little dilution of pyrethroids entering the river in storm runoff. Preliminary tests this season, with water flow twice what it was in 2009, show that "the pyrethroid toxicity we found last year is somewhat diminished, but nevertheless still continuing," Weston said.

The paper, "Urban and Agricultural Sources of Pyrethroid Insecticides to the Sacramento-San Joaquin Delta of California," is online at Environmental Science & Technology.

Robert Sanders | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>