Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop emitting CO2 or geoengineering could be our only hope

02.09.2009
The future of the Earth could rest on potentially dangerous and unproven geoengineering technologies unless emissions of carbon dioxide can be greatly reduced, the latest Royal Society report has found.

The report (published today,1st September, by the Royal Society(1), the UK’s national academy of science) found that unless future efforts to reduce greenhouse gas emissions are much more successful than they have been so far, additional action in the form of geoengineering will be necessary if we are to cool the planet.

Geoengineering technologies were found to be very likely to be technically possible and some were considered to be potentially useful to augment the continuing efforts to mitigate climate change by reducing emissions. However, the report identified major uncertainties regarding their effectiveness, costs and environmental impacts.

Professor John Shepherd, who chaired the Royal Society’s geoengineering study(2), said, “It is an unpalatable truth that unless we can succeed in greatly reducing CO2 emissions we are headed for a very uncomfortable and challenging climate future, and geoengineering will be the only option left to limit further temperature increases. Our research found that some geoengineering techniques could have serious unintended and detrimental effects on many people and ecosystems - yet we are still failing to take the only action that will prevent us from having to rely on them. Geoengineering and its consequences are the price we may have to pay for failure to act on climate change.”

The report assesses the two main kinds of geoengineering techniques – Carbon Dioxide Removal (CDR) and Solar Radiation Management (SRM). CDR techniques address the root of the problem – rising CO2 – and so have fewer uncertainties and risks, as they work to return the Earth to a more normal state. They are therefore considered preferable to SRM techniques, but none has yet been demonstrated to be effective at an affordable cost, with acceptable environmental impacts, and they only work to reduce temperatures over very long timescales.

SRM techniques act by reflecting the sun’s energy away from Earth, meaning they lower temperatures rapidly, but do not affect CO2 levels. They therefore fail to address the wider effects of rising CO2, such as ocean acidification, and would need to be deployed for a very long time. Although they are relatively cheap to deploy, there are considerable uncertainties about their regional consequences, and they only reduce some, but not all, of the effects of climate change, while possibly creating other problems. The report concludes that SRM techniques could be useful if a threshold is reached where action to reduce temperatures must be taken rapidly, but that they are not an alternative to emissions reductions or CDR techniques.

Professor Shepherd added, “None of the geoengineering technologies so far suggested is a magic bullet, and all have risks and uncertainties associated with them. It is essential that we strive to cut emissions now, but we must also face the very real possibility that we will fail. If “Plan B” is to be an option in the future, considerable research and development of the different methods, their environmental impacts and governance issues must be undertaken now. Used irresponsibly or without regard for possible side effects, geoengineering could have catastrophic consequences similar to those of climate change itself. We must ensure that a governance framework is in place to prevent this.”

Of the CDR techniques assessed, the following were considered to have most useful potential:

CO2 capture from ambient air – this would be the preferred method of geoengineering, as it effectively reverses the cause of climate change. At this stage no cost-effective methods have yet been demonstrated and much more research and development is needed.

Enhanced weathering – this technique, which utilises naturally occurring reactions of CO2 from the air with rocks and minerals, was identified as a prospective longer-term option. However more research is needed to find cost-effective methods and to understand the wider environmental implications.

Land use and afforestation – the report found that land use management could and should play a small but significant role in reducing the growth of atmospheric CO2 concentrations. However the scope for applying this technique would be limited by land use conflicts, and all the competing demands for land must be considered when assessing the potential for afforestation and reforestation. Should temperatures rise to such a level where more rapid action needs to be taken, the following SRM techniques were considered to have most potential:

Stratospheric aerosols – these were found to be feasible, and previous volcanic eruptions have effectively provided short-term preliminary case studies of the potential effectiveness of this method. The cost was assessed as likely to be relatively low and the timescale of action short. However, there are some serious questions over adverse effects, particularly depletion of stratospheric ozone.

Space-based methods – these were considered to be a potential SRM technique for long-term use, if the major problems of implementation and maintenance could be solved. At present the techniques remain prohibitively expensive, complex and would be slow to implement.

Cloud albedo approaches (eg. cloud ships) – the effects would be localised and the impacts on regional weather patterns and ocean currents are of considerable concern but are not well understood. The feasibility and effectiveness of the technique is uncertain. A great deal more research would be needed before this technique could be seriously considered.

The following techniques were considered to have lower potential:

Biochar (CDR technique) – the report identified significant doubts relating to the potential scope, effectiveness and safety of this technique and recommended that substantial research would be required before it could be considered for eligibility for UN carbon credits.

Ocean fertilisation (CDR technique) – the report found that this technique had not been proved to be effective and had high potential for unintended and undesirable ecological side effects.

Surface albedo approaches (SRM technique, including white roof methods, reflective crops and desert reflectors) – these were found to be ineffective, expensive and, in some cases, likely to have serious impacts on local and regional weather patterns.

Catherine de Lange | alfa
Further information:
http://www.royalsociety.org/geoengineeringclimate

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>