Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steam Could Remove CO2 to Regenerate Capture Materials

15.07.2010
Because they can remove carbon dioxide from the flue gases of coal-burning facilities such as power plants, solid materials containing amines are being extensively studied as part of potential CO2 sequestration programs designed to reduce the impact of the greenhouse gas.

But although these adsorbent materials do a good job of trapping the carbon dioxide, commonly-used techniques for separating the CO2 from the amine materials – thereby regenerating them for re-use – seem unlikely to be suitable for high-volume industrial applications.

Now, researchers have demonstrated a relatively simple regeneration technique that could utilize waste steam generated by many facilities that burn fossil fuels. This steam-stripping technique could produce concentrated carbon dioxide ready for sequestration in the ocean or deep-earth locations – while readying the amine materials for further use.

“We have demonstrated an approach to developing a practical adsorption process for capturing carbon dioxide and then releasing it in a form suitable for sequestration,” said Christopher Jones, a professor in the School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology.

The research was reported online June 23, 2010 in the early view version of the journal ChemSusChem. The work was supported by New York-based Global Thermostat, LLC., a company that is developing and commercializing technology for the direct capture of carbon dioxide from the air.

Amine sorbents are often regenerated through a process that involves a change in temperature to supply the energy required to break the amine-carbon dioxide chemical bonds.

For convenience, researchers commonly remove the CO2 by heating the amine material in the presence of a flowing gas such as nitrogen or helium. That removes the carbon dioxide, but mixes it with the flowing gas – regenerating the material, but leaving the CO2 mixed with nitrogen or helium.

Another approach is to heat the material in a carbon dioxide stream, but that is less efficient and can lead to fouling of the amine.

Jones and his team from Georgia Tech, SRI International and Global Thermostat took a different approach, heating the sorbent amine in steam at a temperature of approximately 105 degrees Celsius, causing the carbon dioxide to separate from the material. The steam can then be compressed, condensing the water and leaving a concentrated flow of carbon dioxide suitable for sequestration or other use – such as a nutrient for algae growth.

Because most coal-burning facilities generate steam, some of that might be bled off to achieve the separation and regeneration without a significant energy penalty. “In many facilities, steam at this temperature would have no other application, so using it for this purpose would not have a significant cost to the plant,” Jones noted.

The researchers studied three common formulations of the amine material: Class 1 adsorbents based on porous supports impregnated with monomeric or polymeric amines, Class 2 adsorbents that are covalently linked to a solid support, and Class 3 adsorbents based on porous supports upon which aminopolymers are polymerized in-situ, starting from an amine-containing monomer.

The adsorbents were studied through three cycles of carbon dioxide adsorption and steam-stripping. The researchers found differences in how each material was affected by the steam-stripping; performance of the most stable material actually improved, while the least stable material suffered a 13 percent efficiency decline.

“Steam-stripping is widely used in other separation processes, but has never been reported for use with supported amine materials, perhaps due to concerns about sorbent stability,” Jones said. “We reported three uses of the materials in the paper and have only tested them through five or six uses, but we expect the materials could be used many more times. To be practical, the amine-containing materials need to be useful through thousands of cycles.”

Pilot-scale carbon dioxide separation facilities are already in operation using amines dissolved in water. Because of the energy required to regenerate the liquid solutions, many researchers have been examining solid amines – but the work so far has focused mostly on improving the efficiency of the materials, he added.

Though much remains to be done before solid amine materials can be used in large-scale applications, Jones believes the study demonstrates that improved materials can be developed with properties tailored for the steam regeneration process.

“We believe there is potential for development of materials that will be stable for long-term use during regeneration using this technique,” he said. “This study lays the groundwork for an array of future studies that will lead to an understanding of the structural changes induced by steam-stripping.”

In addition to Jones, the research team included Wen Li, Sunho Choi and Jeffery Drese from Georgia Tech, Marc Hornbostel and Gopala Krishnan from SRI International, and Peter M. Eisenberger of Global Thermostat, LLC.

Technical Contact: Christopher Jones (404-385-1683)(christopher.jones@chbe.gatech.edu).

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: CO2 LLC SRI Thermostat carbon dioxide chemical bond flowing gas industrial application regenerate steam

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>