Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists help shed light on key component of China's pollution problem

26.02.2013
Study reveals scale of nitrogen's effect on people and ecosystems.
It's no secret that China is faced with some of the world's worst pollution. Until now, however, information on the magnitude, scope and impacts of a major contributor to that pollution – human-caused nitrogen emissions – was lacking.

A new study co-authored by Stanford Woods Institute biologist Peter Vitousek reveals that amounts of nitrogen (from industry, cars and fertilizer) deposited on land and water in China by way of rain, dust and other carriers increased by 60 percent annually from the 1980s to the 2000s, with profound consequences for the country's people and ecosystems.

Xuejun Liu and Fusuo Zhang at China Agricultural University in Beijing led the study, which is part of an ongoing collaboration with Stanford aimed at reducing agricultural nutrient pollution while increasing food production in China – a collaboration that includes Vitousek and Pamela Matson, a Stanford Woods Institute senior fellow and dean of the School of Earth Sciences.

The researchers analyzed all available data on bulk nitrogen deposition from monitoring sites throughout China from 1980 to 2010.

During the past 30 years, China has become by far the largest creator and emitter of nitrogen globally. The country's use of nitrogen as a fertilizer increased about threefold from the 1980s to 2000s, while livestock numbers and coal combustion increased about fourfold, and the number of automobiles about twentyfold (all of these activities release reactive nitrogen into the environment).

Increased levels of nitrogen have led to a range of deleterious impacts including decreased air quality, acidification of soil and water, increased greenhouse gas concentrations and reduced biological diversity.

"All these changes can be linked to a common driving factor: strong economic growth, which has led to continuous increases in agricultural and non-agricultural reactive nitrogen emissions and consequently increased nitrogen deposition," the study's authors write.

Researchers found highly significant increases in bulk nitrogen deposition since the 1980s in China's industrialized North, Southeast and Southwest. Nitrogen levels on the North China Plain are much higher than those observed in any region in the United States and are comparable to the maximum values observed in the United Kingdom and the Netherlands when nitrogen deposition was at its peak in the 1980s.

China's rapid industrialization and agricultural expansion have led to continuous increases in nitrogen emissions and nitrogen deposition. China's production and use of nitrogen-based fertilizers is greater than that of the United States and the European Union combined. Because of inefficiencies, more than half of that fertilizer is lost to the environment in gaseous or dissolved forms.

China's nitrogen deposition problem could be brought under control, the study's authors state, if the country's environmental policy focused on improving efficiency in agricultural use of nitrogen and reducing nitrogen emissions from all sources, including industry and transit.

Rob Jordan is the communications writer for the Stanford Woods Institute for the Environment.

Peter Vitousek | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>