Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists help shed light on key component of China's pollution problem

26.02.2013
Study reveals scale of nitrogen's effect on people and ecosystems.
It's no secret that China is faced with some of the world's worst pollution. Until now, however, information on the magnitude, scope and impacts of a major contributor to that pollution – human-caused nitrogen emissions – was lacking.

A new study co-authored by Stanford Woods Institute biologist Peter Vitousek reveals that amounts of nitrogen (from industry, cars and fertilizer) deposited on land and water in China by way of rain, dust and other carriers increased by 60 percent annually from the 1980s to the 2000s, with profound consequences for the country's people and ecosystems.

Xuejun Liu and Fusuo Zhang at China Agricultural University in Beijing led the study, which is part of an ongoing collaboration with Stanford aimed at reducing agricultural nutrient pollution while increasing food production in China – a collaboration that includes Vitousek and Pamela Matson, a Stanford Woods Institute senior fellow and dean of the School of Earth Sciences.

The researchers analyzed all available data on bulk nitrogen deposition from monitoring sites throughout China from 1980 to 2010.

During the past 30 years, China has become by far the largest creator and emitter of nitrogen globally. The country's use of nitrogen as a fertilizer increased about threefold from the 1980s to 2000s, while livestock numbers and coal combustion increased about fourfold, and the number of automobiles about twentyfold (all of these activities release reactive nitrogen into the environment).

Increased levels of nitrogen have led to a range of deleterious impacts including decreased air quality, acidification of soil and water, increased greenhouse gas concentrations and reduced biological diversity.

"All these changes can be linked to a common driving factor: strong economic growth, which has led to continuous increases in agricultural and non-agricultural reactive nitrogen emissions and consequently increased nitrogen deposition," the study's authors write.

Researchers found highly significant increases in bulk nitrogen deposition since the 1980s in China's industrialized North, Southeast and Southwest. Nitrogen levels on the North China Plain are much higher than those observed in any region in the United States and are comparable to the maximum values observed in the United Kingdom and the Netherlands when nitrogen deposition was at its peak in the 1980s.

China's rapid industrialization and agricultural expansion have led to continuous increases in nitrogen emissions and nitrogen deposition. China's production and use of nitrogen-based fertilizers is greater than that of the United States and the European Union combined. Because of inefficiencies, more than half of that fertilizer is lost to the environment in gaseous or dissolved forms.

China's nitrogen deposition problem could be brought under control, the study's authors state, if the country's environmental policy focused on improving efficiency in agricultural use of nitrogen and reducing nitrogen emissions from all sources, including industry and transit.

Rob Jordan is the communications writer for the Stanford Woods Institute for the Environment.

Peter Vitousek | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>