Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists help shed light on key component of China's pollution problem

26.02.2013
Study reveals scale of nitrogen's effect on people and ecosystems.
It's no secret that China is faced with some of the world's worst pollution. Until now, however, information on the magnitude, scope and impacts of a major contributor to that pollution – human-caused nitrogen emissions – was lacking.

A new study co-authored by Stanford Woods Institute biologist Peter Vitousek reveals that amounts of nitrogen (from industry, cars and fertilizer) deposited on land and water in China by way of rain, dust and other carriers increased by 60 percent annually from the 1980s to the 2000s, with profound consequences for the country's people and ecosystems.

Xuejun Liu and Fusuo Zhang at China Agricultural University in Beijing led the study, which is part of an ongoing collaboration with Stanford aimed at reducing agricultural nutrient pollution while increasing food production in China – a collaboration that includes Vitousek and Pamela Matson, a Stanford Woods Institute senior fellow and dean of the School of Earth Sciences.

The researchers analyzed all available data on bulk nitrogen deposition from monitoring sites throughout China from 1980 to 2010.

During the past 30 years, China has become by far the largest creator and emitter of nitrogen globally. The country's use of nitrogen as a fertilizer increased about threefold from the 1980s to 2000s, while livestock numbers and coal combustion increased about fourfold, and the number of automobiles about twentyfold (all of these activities release reactive nitrogen into the environment).

Increased levels of nitrogen have led to a range of deleterious impacts including decreased air quality, acidification of soil and water, increased greenhouse gas concentrations and reduced biological diversity.

"All these changes can be linked to a common driving factor: strong economic growth, which has led to continuous increases in agricultural and non-agricultural reactive nitrogen emissions and consequently increased nitrogen deposition," the study's authors write.

Researchers found highly significant increases in bulk nitrogen deposition since the 1980s in China's industrialized North, Southeast and Southwest. Nitrogen levels on the North China Plain are much higher than those observed in any region in the United States and are comparable to the maximum values observed in the United Kingdom and the Netherlands when nitrogen deposition was at its peak in the 1980s.

China's rapid industrialization and agricultural expansion have led to continuous increases in nitrogen emissions and nitrogen deposition. China's production and use of nitrogen-based fertilizers is greater than that of the United States and the European Union combined. Because of inefficiencies, more than half of that fertilizer is lost to the environment in gaseous or dissolved forms.

China's nitrogen deposition problem could be brought under control, the study's authors state, if the country's environmental policy focused on improving efficiency in agricultural use of nitrogen and reducing nitrogen emissions from all sources, including industry and transit.

Rob Jordan is the communications writer for the Stanford Woods Institute for the Environment.

Peter Vitousek | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>