Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientist uncovers the reproductive workings of a harvester ant dynasty

13.02.2013
For the first time, scientists have measured how successfully a queen ant establishes new colonies. The work by Stanford researchers revealed that the queen was still reproducing several decades after mating.
Ants are just about everywhere you look, and yet it's largely unknown how they manage to be so ubiquitous. Scientists have understood the carnal mechanism of ant reproduction, but until now have known little of how successful the daughters of a colony are when they attempt to found new colonies.

For the first time, Stanford biologists have been able to identify specific parent ants and their own children in wild ant colonies, making it possible to study reproduction trends.

And in a remarkable display of longevity, an original queen ant was found to be producing new ants several decades after mating, sending out daughter queens throughout her 20- to 30-year lifespan.

"Most animals produce offspring for a while, and then they enter a life stage where they don't," Gordon said. "These queen ants are mating once, storing that sperm in a special sac, keeping it alive and using it to fertilize eggs for another 25 years."

From an ecological viewpoint, an ant colony is much like a tree putting out seeds, with the potential to create new trees. An ant queen produces genetically identical worker ants that live in the same colony, and also produces sons, and daughter queens. The daughter queens, after mating, establish new colonies of their own.

Deborah Gordon, a biology professor at Stanford and a senior fellow at the Stanford Woods Institute for the Environment, has been studying a particular population of harvester ant colonies in southeastern Arizona for 28 years, meticulously recording when a new colony rises or an older one falls.

Gordon's group took the DNA fingerprint of each colony by analyzing a section of microsatellite, or "junk", DNA to identify which colonies were related. By pairing the genetic analysis with the long-term observations, Gordon was able to determine the original queen and colony, and the order in which the daughter queens and subsequent generations established new colonies.

The researchers also found that only about 25 percent of the colonies reproduce at all, and many of the daughter queens are not successful. The entire population – the study group consisted of about 300 colonies – relies on just a few queens to make most of the offspring year after year.

"We don't know whether all harvester ant populations always behave this way, or whether these trends hold true for all 11,000 ant species, because nobody has identified colony offspring before," Gordon said. "This gives us new insight on how ant populations change over time."

In general, ants play an important role in agriculture around the world, with some helping to disperse seeds while others eat herbivorous insects. Understanding how populations of ant colonies reproduce and expand, and the rate at which they do so, could be useful in managing invasive ant species, predicting crop yields and understanding the ecology of tropical forests.

"If you're trying to understand how a population grows – say, you are trying to keep a population of lions going – the first thing you need to know is how many lionesses you have, and how many cubs they have and can support per year," Gordon said. "For ecological purposes, it's very useful to be able to say how ant populations will grow. This is the first step toward understanding how to predict numbers of ant colonies."

The study was published Jan. 31 in the online version of the Journal of Animal Ecology.
Media Contact

Deborah Gordon, Biology: (650) 725-6364, dmgordon@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Bjorn Carey | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: DNA ant colonies ant species crop yield tropical forest

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>