Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standing trees better than burning ones for carbon neutrality

01.06.2012
The search for alternatives to fossil fuels has prompted growing interest in the use of wood, harvested directly from forests, as a carbon-neutral energy source.
But a new study by researchers at Duke and Oregon State universities finds that leaving forests intact so they can continue to store carbon dioxide and keep it from re-entering the atmosphere will do more to curb climate change over the next century than cutting and burning their wood as fuel.

"Substituting woody bioenergy for fossil fuels isn't an effective method for climate change mitigation," said Stephen R. Mitchell, a research scientist at Duke's Nicholas School of the Environment. Wood stores only about half the amount of carbon-created energy as an equivalent amount of fossil fuels, he explained, so you have to burn more of it to produce as much energy.

"In most cases, it would take more than 100 years for the amount of energy substituted to equal the amount of carbon storage achieved if we just let the forests grow and not harvest them at all," he said.

Mitchell is lead author of the study published in the peer-reviewed journal Global Change Biology Bioenergy. Mark E. Harmon and Kari E. O'Connell of Oregon State University co-authored the study.

Using an ecosystem simulation model developed at Oregon State, the team calculated how long it would take to repay the carbon debt – the net reduction in carbon storage – incurred by harvesting forests for wood energy under a variety of different scenarios.

Their model accounted for a broad range of harvesting practices, ecosystem characteristics and land-use histories. It also took into account varying bioenergy conversion efficiencies, which measure the amount of energy that woody biomass gives off using different energy-generating technologies.

"Few of our combinations achieved carbon sequestration parity in less than 100 years, even when we set the bioenergy conversion factor at near-maximal levels," Harmon said. Because wood stores less carbon-created energy than fossil fuels, you have to harvest, transport and burn more of it to produce as much energy. This extra activity produces additional carbon emissions.

"These emissions must be offset if forest bioenergy is to be used without adding to atmospheric carbon dioxide concentrations in the near-term," he said.

Performing partial harvests at a medium to low frequency – every 50 to 100 years or so – could be an effective strategy, O'Connell noted, but would generate less bioenergy.

"It's a Catch-22," she said. "Less intensive methods of harvesting release fewer emissions but yield less energy. The most intensive methods, such as clear-cutting, produce more energy but also release more carbon back into the atmosphere, prolonging the time required to achieve carbon sequestration parity."

Given current economic realities and the increasing worldwide demand for forest products and land for agriculture, it's unlikely that many forests will be managed in coming years solely for carbon storage, Mitchell said, but that makes it all the more critical that scientists, resource managers and policymakers work together to maximize the carbon storage potential of the remaining stands.

"The take-home message of our study is that managing forests for maximal carbon storage can yield appreciable, and highly predictable, carbon mitigation benefits within the coming century," Mitchell said. "Harvesting forests for bioenergy production would require such a long time scale to yield net benefits that it is unlikely to be an effective avenue for climate-change mitigation."

The research was funded by a NASA New Investigator Program grant to Kari O'Connell, by the H.J. Andrews Long-term Ecological Research Program, and by the Kay and Ward Richardson Endowment.

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>