Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable temperatures boost biodiversity in tropical mountains

09.06.2011
We often think of rainforests and coral reefs as hotspots for biodiversity, but mountains are treasure troves for species too —especially in the tropics, scientists say.

But what drives montane biodiversity? The diversity of plants and animals in tropical mountain ranges may have something to do with the stable seasonal temperatures found in the tropics relative to higher latitudes, says a new study by scientists working at the US National Evolutionary Synthesis Center.

The study, based on nearly 200 species of bats, birds, frogs, lizards and snakes, also suggests that tropical montane species may be less flexible than their temperate counterparts in the face of climate change, the authors say. The results appeared last week in Proceedings of the Royal Society B.

Montane regions are home to many species found only there and nowhere else, said lead author Daniel Cadena of the Universidad de los Andes. Steep gradients in elevation and vegetation in montane zones bolster biodiversity by offering many habitats within a small geographical area, Cadena added. "Whereas a lowland area like a rainforest offers the same habitat over a large distance, mountain areas can go from lowland tropical forest, to cloud forest, to pine forest to paramo over a very short distance," said co-author Ken Kozak of the University of Minnesota-Twin Cities.

This environmental heterogeneity makes montane regions especially rich in a pattern of biodiversity called beta diversity, in which the species composition changes as you move from one area to the next. "As you go up a mountain, two elevations may each have ten species but only share five in common," Kozak said.

The researchers wanted to know why montane biodiversity is especially high in the tropics compared to temperate latitudes. To find out, they compiled location and climate data for nearly 200 species of bats, birds, frogs, lizards and snakes living in montane regions in North, South, and Central America.

When they compared mountain ecosystems in tropical and temperate zones, they found that species living in tropical mountains experienced much milder seasonal temperature swings than their temperate counterparts. A frog living at 2000m in the Andes, for example, might experience temperature fluctuations of only 10 degrees between summer and winter, whereas a frog at the same elevation in the Rockies might experience seasonal temperature swings of 40 degrees or more.

Temperatures naturally change as you move up or down a mountain, the researchers explained. But as one moves southward on the globe from the poles toward the equator, seasonal temperature swings begin to stabilize. "Tolerance to extreme temperatures is much narrower for tropical montane species relative to temperate species," Cadena explained.

The researchers also looked at pairs of species that had recently diverged, and found that tropical species stayed more constant in their temperature preferences as one species split into two. "The thermal niches of tropical species tend to be more evolutionarily conserved over long periods of time relative to temperate zone species," Cadena added.

"The inability of many tropical species to adapt to climate conditions at other elevations forces them to stay in the particular zone that they're in, and is a key ingredient that drives the formation of new species" Kozak said. Given the inevitable climatic differences between mountain peaks and valleys, this inability to budge may prevent tropical montane species from dispersing to other elevations. Over time, the isolation leads to populations diverging to form new species, the authors explained.

"In contrast, in temperate mountains, seasonal temperature swings mean that at some point during the year the species at the bottom of a mountain experience the same cold temperatures found at the top of the mountain. So mountain peaks and valleys don't create the same barriers to dispersal which would normally cause the formation of new species," Kozak said.

The same narrow temperature tolerance that seems to boost biodiversity in tropical mountains may also make tropical montane species more vulnerable to global warming, the authors said. "Our results suggest that maybe tropical species are less flexible, and they might be more affected by climate change," Cadena said.

CITATION: Cadena, C., K. Kozak, et al. (2011). "Latitude, elevational climatic zonation, and speciation in New World vertebrates." Proceedings of the Royal Society B. doi: 10.1098/rspb.2011.0720.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>