Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable temperatures boost biodiversity in tropical mountains

09.06.2011
We often think of rainforests and coral reefs as hotspots for biodiversity, but mountains are treasure troves for species too —especially in the tropics, scientists say.

But what drives montane biodiversity? The diversity of plants and animals in tropical mountain ranges may have something to do with the stable seasonal temperatures found in the tropics relative to higher latitudes, says a new study by scientists working at the US National Evolutionary Synthesis Center.

The study, based on nearly 200 species of bats, birds, frogs, lizards and snakes, also suggests that tropical montane species may be less flexible than their temperate counterparts in the face of climate change, the authors say. The results appeared last week in Proceedings of the Royal Society B.

Montane regions are home to many species found only there and nowhere else, said lead author Daniel Cadena of the Universidad de los Andes. Steep gradients in elevation and vegetation in montane zones bolster biodiversity by offering many habitats within a small geographical area, Cadena added. "Whereas a lowland area like a rainforest offers the same habitat over a large distance, mountain areas can go from lowland tropical forest, to cloud forest, to pine forest to paramo over a very short distance," said co-author Ken Kozak of the University of Minnesota-Twin Cities.

This environmental heterogeneity makes montane regions especially rich in a pattern of biodiversity called beta diversity, in which the species composition changes as you move from one area to the next. "As you go up a mountain, two elevations may each have ten species but only share five in common," Kozak said.

The researchers wanted to know why montane biodiversity is especially high in the tropics compared to temperate latitudes. To find out, they compiled location and climate data for nearly 200 species of bats, birds, frogs, lizards and snakes living in montane regions in North, South, and Central America.

When they compared mountain ecosystems in tropical and temperate zones, they found that species living in tropical mountains experienced much milder seasonal temperature swings than their temperate counterparts. A frog living at 2000m in the Andes, for example, might experience temperature fluctuations of only 10 degrees between summer and winter, whereas a frog at the same elevation in the Rockies might experience seasonal temperature swings of 40 degrees or more.

Temperatures naturally change as you move up or down a mountain, the researchers explained. But as one moves southward on the globe from the poles toward the equator, seasonal temperature swings begin to stabilize. "Tolerance to extreme temperatures is much narrower for tropical montane species relative to temperate species," Cadena explained.

The researchers also looked at pairs of species that had recently diverged, and found that tropical species stayed more constant in their temperature preferences as one species split into two. "The thermal niches of tropical species tend to be more evolutionarily conserved over long periods of time relative to temperate zone species," Cadena added.

"The inability of many tropical species to adapt to climate conditions at other elevations forces them to stay in the particular zone that they're in, and is a key ingredient that drives the formation of new species" Kozak said. Given the inevitable climatic differences between mountain peaks and valleys, this inability to budge may prevent tropical montane species from dispersing to other elevations. Over time, the isolation leads to populations diverging to form new species, the authors explained.

"In contrast, in temperate mountains, seasonal temperature swings mean that at some point during the year the species at the bottom of a mountain experience the same cold temperatures found at the top of the mountain. So mountain peaks and valleys don't create the same barriers to dispersal which would normally cause the formation of new species," Kozak said.

The same narrow temperature tolerance that seems to boost biodiversity in tropical mountains may also make tropical montane species more vulnerable to global warming, the authors said. "Our results suggest that maybe tropical species are less flexible, and they might be more affected by climate change," Cadena said.

CITATION: Cadena, C., K. Kozak, et al. (2011). "Latitude, elevational climatic zonation, and speciation in New World vertebrates." Proceedings of the Royal Society B. doi: 10.1098/rspb.2011.0720.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>