Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring Cold Snap Helps with Stream Ecosystem Research

27.07.2009
A rare April freeze in 2007 provided researchers at the Department of Energy’s Oak Ridge National Laboratory with further evidence that climate change could have negative effects on stream and forest ecosystems.

As warm weather arrives sooner in many parts of the nation, forest plants and trees on the banks flourish, shading the stream from sunlight and causing an overall decrease in productivity in the late spring and summer.

A research paper published in this month’s issue of Global Change Biology titled “Unexpected effect of climate change: Stream ecosystem responses to the 2007 spring freeze” describes how a small change in canopy cover can dramatically impact a stream.

“The study implies that the algal productivity pulse in the stream that drives the ecosystem during the spring months could be shortened with climate change if leaf-out continues to occur earlier each year,” said ORNL researcher Patrick Mulholland, author of the paper. “The stream no longer gets that period of peak productivity in spring because the leaves are shading the stream when the sun angle is relatively high.”

For this particular study, an Arctic air mass sent temperatures to below 28 degrees Fahrenheit for several nights in succession, freezing many of the newly emerged leaves and leaving the stream exposed to higher than normal levels of sunlight over the next several months.

This early April freeze resulted in positive effects for a well-studied East Tennessee stream and reiterated the importance of sunlight on the growth of algae, bacteria, snails and other organisms in forest streams.

Compared to typical conditions, the post-freeze conditions set in motion a chain reaction.

“Increased light levels caused a cascade of ecological effects in the stream, beginning with considerably higher growth rates during the late spring and summer months when normally low light levels severely limit stream production,” said Mulholland, a member of the Environmental Sciences Division.

In this case, a freeze caused the Walker Branch stream to prosper, but an ecosystem cannot count on unexpected weather events to maintain productivity.

“The stream ecosystem cannot depend on an Arctic air mass moving in every year, killing the leaves and exposing the stream to sunlight, resulting in increased growth,” Mulholland said. “It’s an unpredictable weather occurrence. On the other hand, we see that early leaf emergence has become predictable and has negative effects on the stream ecosystem during the critical spring period when many stream organisms are dependent on algae for food.”

Although canopy cover in the spring leads to decreased organism growth, in the autumn, bacteria and fungi decompose the leaves and grow from the nutrients, thus stimulating productivity.

This research was funded by the Office of Biological and Environmental Research within the DOE Office of Science. Co-authors of the research paper are John Smith of ORNL, Brian Roberts of Louisiana Universities Marine Consortium and Walter Hill of the University of Illinois.

ORNL is managed by UT-Battelle for the Department of Energy.

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov

Further reports about: Arctic ORNL STREAM Science TV Snap cold fusion ecosystem environmental risk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>