Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring Cold Snap Helps with Stream Ecosystem Research

27.07.2009
A rare April freeze in 2007 provided researchers at the Department of Energy’s Oak Ridge National Laboratory with further evidence that climate change could have negative effects on stream and forest ecosystems.

As warm weather arrives sooner in many parts of the nation, forest plants and trees on the banks flourish, shading the stream from sunlight and causing an overall decrease in productivity in the late spring and summer.

A research paper published in this month’s issue of Global Change Biology titled “Unexpected effect of climate change: Stream ecosystem responses to the 2007 spring freeze” describes how a small change in canopy cover can dramatically impact a stream.

“The study implies that the algal productivity pulse in the stream that drives the ecosystem during the spring months could be shortened with climate change if leaf-out continues to occur earlier each year,” said ORNL researcher Patrick Mulholland, author of the paper. “The stream no longer gets that period of peak productivity in spring because the leaves are shading the stream when the sun angle is relatively high.”

For this particular study, an Arctic air mass sent temperatures to below 28 degrees Fahrenheit for several nights in succession, freezing many of the newly emerged leaves and leaving the stream exposed to higher than normal levels of sunlight over the next several months.

This early April freeze resulted in positive effects for a well-studied East Tennessee stream and reiterated the importance of sunlight on the growth of algae, bacteria, snails and other organisms in forest streams.

Compared to typical conditions, the post-freeze conditions set in motion a chain reaction.

“Increased light levels caused a cascade of ecological effects in the stream, beginning with considerably higher growth rates during the late spring and summer months when normally low light levels severely limit stream production,” said Mulholland, a member of the Environmental Sciences Division.

In this case, a freeze caused the Walker Branch stream to prosper, but an ecosystem cannot count on unexpected weather events to maintain productivity.

“The stream ecosystem cannot depend on an Arctic air mass moving in every year, killing the leaves and exposing the stream to sunlight, resulting in increased growth,” Mulholland said. “It’s an unpredictable weather occurrence. On the other hand, we see that early leaf emergence has become predictable and has negative effects on the stream ecosystem during the critical spring period when many stream organisms are dependent on algae for food.”

Although canopy cover in the spring leads to decreased organism growth, in the autumn, bacteria and fungi decompose the leaves and grow from the nutrients, thus stimulating productivity.

This research was funded by the Office of Biological and Environmental Research within the DOE Office of Science. Co-authors of the research paper are John Smith of ORNL, Brian Roberts of Louisiana Universities Marine Consortium and Walter Hill of the University of Illinois.

ORNL is managed by UT-Battelle for the Department of Energy.

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov

Further reports about: Arctic ORNL STREAM Science TV Snap cold fusion ecosystem environmental risk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>