Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spillways can divert sand from river to rebuilt wetlands

25.07.2012
Researchers could have a new method to rebuild wetlands of the Louisiana delta, thanks to a chance finding while monitoring severe flooding of the Mississippi River.

A team of civil engineers and geologists from the University of Illinois, in collaboration with the U.S. Army Corps of Engineers, published their findings in the journal Nature Geoscience.

In the spring and summer of 2011, high floodwaters on the Mississippi prompted the corps to open the Bonnet Carre spillway. The spillway had been built to divert water from urban New Orleans after flooding in 1927. The Illinois team saw in the spillway opening a chance to study how much sand flowed from the river into the spillway wetlands.

“Whenever we have such natural disasters, it stresses the human system quite a bit,” said Praveen Kumar, a professor of civil and environmental engineering at the U. of I. “But it also offers an opportune time to look at some scientific questions that we might otherwise not be able to explore.”

Armed with funds from the National Science Foundation, the researchers went to the spillway site to monitor the sand diverted from the river to the delta wetlands. They discovered a surprising dichotomy: a mere 10 to 15 percent of water from the top of the river sloshed into the spillway, but an estimated 36 to 41 percent of the river’s sand load deposited into the Bonnet Carre.

“That was a completely unexpected finding in this particular study,” said postdoctoral researcher Jeffrey Nittrouer.

“I think one of the real strong outcomes that came from this particular study is that we happened to be lucky about where the site was placed. Back when the structure was built, the Army Corps of Engineers just wanted to get water out of the river. But it turns out that where they decided to place the spillway was a fantastic location for getting sand out as well.”

The findings were exciting to the team, because diverting river sediment has been a goal of research work to build up wetlands. Coastal wetlands act as a natural buffer against storm surges, protecting residential areas from the turbulent weather along the gulf. Under natural conditions, flooding periodically would inundate the wetlands, allowing sediment overflow to deposit incrementally over time to replace ground lost to erosion. However, since the urbanization of New Orleans, the extensively engineered levee system has cut off the river from the wetlands.

“We’re essentially putting a straitjacket on the river itself, disconnecting the river from the surrounding environment and preventing these natural exchange processes,” Nittrouer said. “Because we build communities along these rivers, we build levee systems that corral all that water and sediment and take it straight to the Gulf of Mexico.”

What caused such a large percentage of sand to divert to the spillway in such a small amount of water? The researchers believe that the local conditions at that point in the river hold the answer. The spillway is on the inside of a bend and adjacent to a sandbar.

“That acts as a means of allowing for sustained high-concentration sandy water to be positioned very near the spillway itself, so that sediment-enriched water is now spilling into the floodway and that sediment is depositing out,” Nittrouer said.

Now, the researchers will further explore how local river conditions could favor the movement of sediment from the river into the neighboring wetland spillway. They plan to use modeling and lab studies to find optimal conditions that could shunt sediment out of the river, with the eventual goal of designing other spillways that could be opened strategically to rebuild lost wetlands without flooding residential areas.

Geology professor James Best, geology and civil and environmental engineering professor Gary Parker, graduate students Ronald Cash and Matthew Czapiga, and corps engineer Christopher Brantley were co-authors of the study.

Editor’s notes: To reach Praveen Kumar, call 217-333-4688; email kumar1@illinois.edu. To reach Jeffrey Nittrouer, email jeffnitt@illinois.edu.
The paper, “Mitigating Land Loss in Coastal Louisiana by Controlled Diversion of Mississippi River Sand,” is available online.

http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1525.html

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>