Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spillways can divert sand from river to rebuilt wetlands

25.07.2012
Researchers could have a new method to rebuild wetlands of the Louisiana delta, thanks to a chance finding while monitoring severe flooding of the Mississippi River.

A team of civil engineers and geologists from the University of Illinois, in collaboration with the U.S. Army Corps of Engineers, published their findings in the journal Nature Geoscience.

In the spring and summer of 2011, high floodwaters on the Mississippi prompted the corps to open the Bonnet Carre spillway. The spillway had been built to divert water from urban New Orleans after flooding in 1927. The Illinois team saw in the spillway opening a chance to study how much sand flowed from the river into the spillway wetlands.

“Whenever we have such natural disasters, it stresses the human system quite a bit,” said Praveen Kumar, a professor of civil and environmental engineering at the U. of I. “But it also offers an opportune time to look at some scientific questions that we might otherwise not be able to explore.”

Armed with funds from the National Science Foundation, the researchers went to the spillway site to monitor the sand diverted from the river to the delta wetlands. They discovered a surprising dichotomy: a mere 10 to 15 percent of water from the top of the river sloshed into the spillway, but an estimated 36 to 41 percent of the river’s sand load deposited into the Bonnet Carre.

“That was a completely unexpected finding in this particular study,” said postdoctoral researcher Jeffrey Nittrouer.

“I think one of the real strong outcomes that came from this particular study is that we happened to be lucky about where the site was placed. Back when the structure was built, the Army Corps of Engineers just wanted to get water out of the river. But it turns out that where they decided to place the spillway was a fantastic location for getting sand out as well.”

The findings were exciting to the team, because diverting river sediment has been a goal of research work to build up wetlands. Coastal wetlands act as a natural buffer against storm surges, protecting residential areas from the turbulent weather along the gulf. Under natural conditions, flooding periodically would inundate the wetlands, allowing sediment overflow to deposit incrementally over time to replace ground lost to erosion. However, since the urbanization of New Orleans, the extensively engineered levee system has cut off the river from the wetlands.

“We’re essentially putting a straitjacket on the river itself, disconnecting the river from the surrounding environment and preventing these natural exchange processes,” Nittrouer said. “Because we build communities along these rivers, we build levee systems that corral all that water and sediment and take it straight to the Gulf of Mexico.”

What caused such a large percentage of sand to divert to the spillway in such a small amount of water? The researchers believe that the local conditions at that point in the river hold the answer. The spillway is on the inside of a bend and adjacent to a sandbar.

“That acts as a means of allowing for sustained high-concentration sandy water to be positioned very near the spillway itself, so that sediment-enriched water is now spilling into the floodway and that sediment is depositing out,” Nittrouer said.

Now, the researchers will further explore how local river conditions could favor the movement of sediment from the river into the neighboring wetland spillway. They plan to use modeling and lab studies to find optimal conditions that could shunt sediment out of the river, with the eventual goal of designing other spillways that could be opened strategically to rebuild lost wetlands without flooding residential areas.

Geology professor James Best, geology and civil and environmental engineering professor Gary Parker, graduate students Ronald Cash and Matthew Czapiga, and corps engineer Christopher Brantley were co-authors of the study.

Editor’s notes: To reach Praveen Kumar, call 217-333-4688; email kumar1@illinois.edu. To reach Jeffrey Nittrouer, email jeffnitt@illinois.edu.
The paper, “Mitigating Land Loss in Coastal Louisiana by Controlled Diversion of Mississippi River Sand,” is available online.

http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1525.html

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>