Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Species unique to single island should not be rare there

Model of island ecology sheds new light on the origins of island species
Animal and bird species found only on a single island should still be common within that island.

This is the finding of a new model developed by researchers from the University of Leeds and Imperial College London. The model could apply both to actual islands and isolated areas of habitat on the mainland that are home to unique species, such as the table top mountains of South America.

The natural history of islands is littered with examples of unusual species found only in one place, such as the Hawaiian Goose, Galápagos Tortoises and Dodo that may once have been common on their islands, but since human contact have become rare or even extinct. Now this new modelling approach shows that in general, most unique island species should be common on their island. If they are not, then the researchers believe human activity is most likely to be the cause.

"Models of island ecology have tended to focus on the total number of different species that you might expect to find on an island, rather than on how common or rare those species are and whether or not they are unique to the island," says Dr James Rosindell, of Leeds' Faculty of Biological Sciences. "Our model is able to predict the way that new species develop in isolation from the mainland as well as how many individuals of each species we could expect to see in their natural habitat. However, there is little data on population sizes and this highlights a real gap in knowledge that we need to fill."

To develop the model, the researchers collated data on bird species found across 35 islands and archipelagos. Modern genetics makes it possible to identify which species have diverged to create new species – so the team were able to test their model against actual data.

The model and data both show that whilst islands close to the mainland have no unique species, more distant islands tend to have unique species that are closely related to mainland species. Only the islands and archipelagos furthest from the mainland are expected to contain large numbers of unique species closely related to each other, such as Darwin's finches on the Galápagos and the Hawaiian honeycreepers.

"This model is still in its early stages of development, but we hope it will help to prompt more study of population sizes on islands," says Dr Albert Phillimore, from Imperial's Department of Life Sciences. "Comparing the predictions of different models to actual data can help us to identify where other factors are coming into play – such as additional ecological processes and human intervention. In the future, we plan to look at how the model could also help make predictions relevant to conservation strategy."

The work has been funded through an EPSRC research fellowship and an Imperial Junior Research Fellowship.

Jo Kelly | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>