Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish researchers discover significant leatherback turtle nesting beaches in the Caribbean

04.08.2008
A scientific project funded by the BBVA Foundation and conducted by a team from the Spanish Council for Scientific Research (CSIC) explored around 100 kilometers of practically uncharted Atlantic beach in the north of Colombia and south of Panama between the years 2006 and 2007.

In the course of their work, they came across extensive nesting grounds that bring new hope for the survival of the leatherback turtle. This species suffered a grave decline in the twentieth century and is among those considered by the World Conservation Union to be in critical danger of extinction.

The project has permitted the documenting of around 6,000 new annual nests in the zone. The most important site is Armila beach in southern Panama, which is being managed by the indigenous Kuna community with stringent protection measures in place for the turtles. Armila is home to one of the highest known densities of leatherback nests, with a similarly high birth success rate. It is also an exceptional model of ancestral co-existence with a positive conservation impact for a seriously imperiled species.

The results of this study confirm the Central American Caribbean as the world’s fourth largest nesting zone for the leatherback turtle after the Guayanas, Gabon and the island of Trinidad. However the success of Armila was not repeated at remaining beaches along the exploration route, where the team detected severe disturbances that impair turtle nesting – including grave cases of nest raiding – and could jeopardize the future of this leatherback population.

The BBVA Foundation project, funded under its Call for Research Proposals in Conservation Biology, has been written up in the scientific journal Biological Conservation with the title: “Globally significant nesting of the leatherback turtle (Dermochelys coriacea) on the Caribbean coast of Colombia and Panama”, citing as authors Juan Patiño, Adolfo Marco and Liliana Quiñones, researchers at Doñana Biological Station (CSIC), and Brendan Godley from the Centre for Ecology and Conservation at the University of Exeter, United Kingdom.

An exceptional creature

The leatherback (Dermochelys coriacea) is the world’s largest turtle, with some individuals reaching two meters in length and weights of around 800 kilos. They can live up to 100 years, nest in topical zones and make the longest ocean crossings of any marine vertebrate, returning 11,000 kilometers to lay their eggs on the beach where they were born. They are also resistant to very low temperatures, meaning they can be found in all the world’s oceans. In fact, some have even been sighted near the polar regions.

The leatherback turtle chooses hot tropical beaches to make its nest. It does not breed every year, but when it does so stands out for the large quantity of its nests—normally around seven (with cases of up to 11) per season, excavated at intervals of 15 days. Each nest has between 65 and 110 eggs and can weigh between 5 and 10 kilograms.

Before covering the nest, the leatherback places smaller fake eggs on top of its own clutch, so they are protected during the development phase. It digs the deepest nesting pit of any sea turtle, up to one meter deep. This means the hatchlings born after two months’ incubation must make a Herculean effort to scale the near vertical walls to the sandy surface. They then have to make their way into the ocean waters, where they disperse and swim for over ten years until reaching maturity. They then return to the beach of their birth to begin their own breeding cycle.

Exploration and discoveries

The exploration supported by the BBVA Foundation took place between the towns of Anachukuna (8º43`00`N, 77º32`50``W), in the Kunayala area of southeast Panama, and Mulatos in Colombia (8º38`55.33``N, 76º43`09.25``W) during the breeding seasons of the last three years.

Prior to the study, the zone was reckoned to harbor between 100 and 250 nesting females, though many beaches were virtually unexplored. But this latest census lifts their annual number to between 1,140 and 1,300, making it a major Atlantic Ocean breeding ground and refuge for the leatherback turtle.

Of the seven nesting beaches investigated, Armila (4.5 km length) is the most abundant in annual nests, which number from 3,600 to 4,040 units or 60% to 67% of the area-wide total. Armila’s nesting density, with an average of 900 nests per kilometer of beach, is also exceptional—the highest in the Central American Caribbean ahead of Playa Chiriquí, also in Panama, whose 128 nests per kilometer were until now considered the local maximum. Armila also stands out for the high survival rate of nests and the hatch rate of clutches, which borders on 70 %.

Javier Fernández | alfa
Further information:
http://www.fbbva.es
http://www.sciencedirect.com/science/journal/00063207

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>