Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern Ocean seals dive deep for climate data

14.08.2008
Elephant seals are helping scientists overcome a critical blind-spot in their ability to detect change in Southern Ocean circulation and sea ice production and its influence on global climate.

According to a paper published today by a team of French, Australian, US and British scientists in the Proceedings of the National Academy of Sciences, elephant seals fitted with special oceanographic sensors are providing a 30-fold increase in data recorded in parts of the Southern Ocean rarely observed using traditional ocean monitoring techniques.

“They have made it possible for us to observe large areas of the ocean under the sea ice in winter for the first time,” says co-author Dr Steve Rintoul from the Antarctic Climate & Ecosystem Cooperative Research Centre (ACE CRC) and CSIRO’s Wealth from Oceans National Research Flagship.

"Conventional oceanographic platforms cannot provide observations under the sea ice, particularly on the Antarctic continental shelf where the most important water mass transformations take place. Until now, our ability to represent the high-latitude oceans and sea ice in oceanographic and climate models has suffered as a result.”

“They have made it possible for us to observe large areas of the ocean under the sea ice in winter for the first time,” says co-author Dr Steve Rintoul from the Antarctic Climate & Ecosystem Cooperative Research Centre (ACE CRC) and CSIRO’s Wealth from Oceans National Research Flagship.Co-author, University of Tasmania Professor Mark Hindell says the seal data complements traditional oceanographic sampling from ships, satellites and drifting buoys.

“By providing ocean measurements under the sea ice, the seals are helping us to establish the global ocean observing system we need to detect and understand changes in the ocean,” he says.

The polar regions play an important role in the earth’s climate system and are changing more rapidly than any other part of the world. In the southern hemisphere, the limited observations available suggest that the circumpolar Southern Ocean has warmed more rapidly than the global ocean average and that the dense water formed near Antarctica and exported to lower latitudes has freshened in some locations and warmed in others. Polar changes are important because a number of feedbacks involving ocean currents, sea ice and the carbon cycle have the potential to accelerate the rate of change.

The seals typically covered a distance of 35-65 kilometres a day with a total of 16,500 profiles obtained in 2004-5. Of these, 8,200 were obtained south of 60S, nine times more than have been obtained from floats and research and supply ships. The 4,520 profiles obtained within the sea ice is a 30-fold increase over conventional data. The seals dived repeatedly to a depth of more than 500 metres on average and to a maximum depth of nearly 2000m. The Australian team included scientists from CSIRO, the ACE CRC, the University of Tasmania's School of Zoology and Centre for Marine Science and Charles Darwin University.

National Research Flagships

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia’s major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>