Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solved! Mystery that stumped ecosystem modelers

23.02.2012
Scientists show that predator/prey relationships make possible the rich biodiversity of complex ecosystems

As scientists warn that the Earth is on the brink of a period of mass extinctions, they are struggling to identify ecosystem responses to environmental change. But to truly understand these responses, more information is needed about how the Earth's staggering diversity of species originated.

Curiously, a vexing modeling mystery has stymied research on this topic: mathematical models have told us that complex ecosystems, such as jungles, deserts and coral reefs, in which species coexist and interact with another, cannot persist--even though they obviously do.

But now, Stefano Allesina and Si Tang, both of the University of Chicago, have solved that vexing modeling mystery, and have thereby laid the groundwork for improvements in the modeling of complex ecosystems to environmental change.

The researchers' work, which was funded by the National Science Foundation (NSF), is published in this week's issue of Nature.

The tension between mathematical models of ecosystems and the existence of the Earth's rich biodiversity was first exposed about 40 years ago by the development of a ground-breaking mathematical model that represented the relationship between ecosystem stability and diversity; the model was developed by Robert M. May of Oxford University.

According to May's model, ecosystems that harbor large numbers of interacting species would necessarily be extremely unstable--so unstable that even slight perturbations, such as variable weather and environmental conditions, would be enough to trigger massive extinctions within them. Therein lies a paradox: According to May's modeling, the persistence in nature of the complex ecosystems we observe should be exceedingly improbable.

Ever since May released his modeling results, scientists have been attempting to identify factors that enable species to persist despite the general tendency towards instability and extinctions highlighted by May's results. Now, in their Nature paper, Allesina and Tang explain why May's results do not accurately describe ecosystems in which "Eat or be eaten", relationships (predator/prey relationships) are prevalent. Allesina explains: "May's model assumes that any two species in a large ecological network interact with one another at random, and without any consideration of the specific type of interaction between them, whether it is a predator-prey relationship, a mutualistic relationship or a competitive relationship."

But in their recent research, Allesina and Tang modeled ecosystems in which species consume each other in addition to interacting with one another as competitors or mutualists. Their results explain why large numbers of species do, in fact, thrive instead of necessarily going extinct as predicted by May's model. This advance provides the foundation for the development of increasingly sophisticated analyses of ecosystem responses to environmental change.

Allesina believes that it is predator/prey relationships (not competitor or mutualistic relationships) that provide the necessary stability for almost infinite numbers of species to exist in ecosystems. They do so by keeping the size of species populations in check at supportable levels. Allesina explains, "When prey are high, predators increase and reduce the number of prey by predation. When predators are low, prey decrease and thus reduce the number of predators by starvation. These predator/prey relationships thereby promote stability in ecosystems and enable them to maintain large numbers of species."

By contrast, mutualistic relationships may reinforce the growth of large populations and competitive relationships may depress population numbers to the point of ecological instability. Allesina says that May's model mixed various types of species interactions but could not represent these relationships accurately because of technical modeling constraints that he and Tang overcame.

"The results of Allesina and Tang's network analyses are important," says David Spiller, an NSF program director, "because they show that the stability properties of complex ecological systems are determined by the type of interaction among species (predation, competition, mutualism) and the strength of those interactions."

Allesina says that he and Tang intend to further improve their ecosystem model by embedding into it well-known interactions that exist between particular species. He also says that the insights gleaned through this study may be used to improve models of other types of networks that are unrelated to ecology, such as various types of gene regulatory networks and chemical reactions.

Remarkably, Allesina says that he and Tang cracked the biodiversity mystery without supercomputers or other high-tech instruments that are so frequently at the core of current biological discoveries: "We did the necessary calculations with just a pen and paper after finding a 1988 article on quantum physics that gave us the key to crack the problem."

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Savannahs help to slow climate change
22.05.2015 | Max-Planck-Institut für Biogeochemie

nachricht Surviving Harsh Environments Becomes a Death-Trap for Specialist Corals
21.05.2015 | University of Southampton

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>