Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solved! Mystery that stumped ecosystem modelers

23.02.2012
Scientists show that predator/prey relationships make possible the rich biodiversity of complex ecosystems

As scientists warn that the Earth is on the brink of a period of mass extinctions, they are struggling to identify ecosystem responses to environmental change. But to truly understand these responses, more information is needed about how the Earth's staggering diversity of species originated.

Curiously, a vexing modeling mystery has stymied research on this topic: mathematical models have told us that complex ecosystems, such as jungles, deserts and coral reefs, in which species coexist and interact with another, cannot persist--even though they obviously do.

But now, Stefano Allesina and Si Tang, both of the University of Chicago, have solved that vexing modeling mystery, and have thereby laid the groundwork for improvements in the modeling of complex ecosystems to environmental change.

The researchers' work, which was funded by the National Science Foundation (NSF), is published in this week's issue of Nature.

The tension between mathematical models of ecosystems and the existence of the Earth's rich biodiversity was first exposed about 40 years ago by the development of a ground-breaking mathematical model that represented the relationship between ecosystem stability and diversity; the model was developed by Robert M. May of Oxford University.

According to May's model, ecosystems that harbor large numbers of interacting species would necessarily be extremely unstable--so unstable that even slight perturbations, such as variable weather and environmental conditions, would be enough to trigger massive extinctions within them. Therein lies a paradox: According to May's modeling, the persistence in nature of the complex ecosystems we observe should be exceedingly improbable.

Ever since May released his modeling results, scientists have been attempting to identify factors that enable species to persist despite the general tendency towards instability and extinctions highlighted by May's results. Now, in their Nature paper, Allesina and Tang explain why May's results do not accurately describe ecosystems in which "Eat or be eaten", relationships (predator/prey relationships) are prevalent. Allesina explains: "May's model assumes that any two species in a large ecological network interact with one another at random, and without any consideration of the specific type of interaction between them, whether it is a predator-prey relationship, a mutualistic relationship or a competitive relationship."

But in their recent research, Allesina and Tang modeled ecosystems in which species consume each other in addition to interacting with one another as competitors or mutualists. Their results explain why large numbers of species do, in fact, thrive instead of necessarily going extinct as predicted by May's model. This advance provides the foundation for the development of increasingly sophisticated analyses of ecosystem responses to environmental change.

Allesina believes that it is predator/prey relationships (not competitor or mutualistic relationships) that provide the necessary stability for almost infinite numbers of species to exist in ecosystems. They do so by keeping the size of species populations in check at supportable levels. Allesina explains, "When prey are high, predators increase and reduce the number of prey by predation. When predators are low, prey decrease and thus reduce the number of predators by starvation. These predator/prey relationships thereby promote stability in ecosystems and enable them to maintain large numbers of species."

By contrast, mutualistic relationships may reinforce the growth of large populations and competitive relationships may depress population numbers to the point of ecological instability. Allesina says that May's model mixed various types of species interactions but could not represent these relationships accurately because of technical modeling constraints that he and Tang overcame.

"The results of Allesina and Tang's network analyses are important," says David Spiller, an NSF program director, "because they show that the stability properties of complex ecological systems are determined by the type of interaction among species (predation, competition, mutualism) and the strength of those interactions."

Allesina says that he and Tang intend to further improve their ecosystem model by embedding into it well-known interactions that exist between particular species. He also says that the insights gleaned through this study may be used to improve models of other types of networks that are unrelated to ecology, such as various types of gene regulatory networks and chemical reactions.

Remarkably, Allesina says that he and Tang cracked the biodiversity mystery without supercomputers or other high-tech instruments that are so frequently at the core of current biological discoveries: "We did the necessary calculations with just a pen and paper after finding a 1988 article on quantum physics that gave us the key to crack the problem."

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>