Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapping turtles finding refuge in urban areas while habitats are being polluted

28.08.2013
Stopping pollution from flowing into waterways could restore natural habitats

In the Midwest, people have a fear of encountering snapping turtles while swimming in local ponds, lakes and rivers.


While snapping turtles are not aggressive animals, researchers warn not to approach the animals if they are spotted nearby.

Credit: Bill Peterman/University of Missouri

Now in a new study, a University of Missouri researcher has found that snapping turtles are surviving in urban areas as their natural habitats are being polluted or developed for construction projects. One solution is for people to stop using so many chemicals that are eventually dumped into the waterways, the scientist said.

"Snapping turtles are animals that can live in almost any aquatic habitat as long as their basic needs for survival are met," said Bill Peterman, a post-doctoral researcher in the Division of Biological Sciences at MU. "Unfortunately, suitable aquatic habitats for turtles are being degraded by pollution or completely lost due to development. We found that snapping turtles can persist in urbanized areas, despite the potential for more interaction with humans."

Peterman said that reducing negative inputs, such as waste and harmful chemicals, into waterways will help restore snapping turtles' habitats. Engaging in this type of environmental action also will increase biodiversity in those habitats and improve the quality of life to all species that call those habitats home.

However, even though turtles are living in urban areas, Peterman says people have nothing to fear.

"Everyone has a snapping turtle story, but some are just too far-fetched and lead to false accusations," Peterman said. "In reality, snapping turtles aren't aggressive animals and won't bite unless they are provoked. So, if you should happen to see one around your property, simply leave it alone and let it go about its business."

The study took place in the Central Canal that flows through urban Indianapolis; researchers used tracking devices on large snapping turtles to monitor turtle movements. Peterman and his colleagues found that snapping turtles used all parts of the Central Canal, but were particularly dependent upon forested areas.

"While we didn't study whether the snapping turtle populations were increasing or decreasing, we regularly saw hatchling and juvenile snapping turtles," Peterman said. "Snapping turtles may not be the first animals that come to mind when thinking about urban wildlife, but if we continue to improve waterways in more places, such as big cities, than the species can coexist peacefully."

The study, "Movement and Habitat Use of the Snapping Turtle in an Urban Landscape, was published in Urban Ecosystems, and was co-authored by Travis Ryan, associate professor and chair of the Department of Biological Science at Butler University; Jessica Stephens, from the Department of Plant Biology at the University of Georgia-Athens; and Sean Sterrett, from the School of Forestry and Natural Resources at the University of Georgia-Athens. This study is part of ongoing research in urban ecology, conducted through Butler University's Center for Urban Ecology.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>