Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes, salamanders and other creatures thrive in areas with higher deer populations

21.10.2008
Reducing the number of deer in forests and parks may unexpectedly reduce the number of reptiles, amphibians and insects in that area, new research suggests.

A recent study by researchers at Ohio State University and National Park Service found that higher deer activity is modifying forest ecosystems in unexpected ways. Out of several species of snakes, salamanders, and invertebrates studied, a greater diversity of animals were found in areas with deer populations than were in areas with no deer activity.

The study, which comes at a time when many states have begun to selectively control deer populations, challenges previous research that has suggested deer populations can negatively impact forest ecosystems through eating plants that many smaller animals may depend on.

The areas with higher deer populations may appear to lack the high variety of low-lying plants found in exclosures, but the deer may be creating a richer soil mixture through their droppings. This rich soil may be benefiting some plants in the area, which in turn is attracting a larger diversity of insects and invertebrates.

Instead, researchers found that high numbers of deer may in fact be attracting a greater number of species. This may be because their waste creates a more nutrient-rich soil and as a result, areas with deer draw higher numbers of insects and other invertebrates. These insects then attract larger predators which thrive on insect lava such as salamanders, and the salamanders in turn attract even larger predators such as snakes.

The results, which were published recently in The Journal of Wildlife Management, highlight how recent attempts to control deer populations in and around forests may indirectly affect other animals in the forest.

“By just reducing the number of deer in the forest, we’re actually indirectly impacting forest ecosystems without even knowing the possible effects,” said Katherine Greenwald, co-author of the study and doctoral student in evolution, ecology, and organismal biology at Ohio State.

“Smaller creatures like salamanders and insects are all part of the base of a larger food web that can be affected by small changes.”

Research was conducted in Cuyahoga Valley National Park, a 51-square-mile park in northeastern Ohio with an estimated deer population of 2,300 to 4,600. The park’s large population of deer and varying landscape made it an ideal place to test for the effects of these animals, she said.

Researchers studied the forest by pairing 12 unfenced sites with 12 fenced sites, called exclosures, based on similar habitat type, forest cover, soil type, and slope. The exclosures, which are used frequently to test for differences in plant growth between grazed and untouched areas, prevent deer from grazing in certain areas. Both unfenced and fenced areas measured 10 meters by 10 meters (approximately 33 feet by 33 feet).

Five square wood boards measuring almost one square foot (30 centimeters square) were placed in random spots in each fenced and unfenced site. These boards are placed on top of the soil and act as rocks or other ground cover for salamanders, slugs and other animals to hide under for protection.

The researchers then counted the number of invertebrates and vertebrates under each board every three to four weeks from May through December in 2004 and monthly from May through September the following year.

They identified a variety of species during the study including snakes, salamanders, earthworms, slugs, spiders, ants, beetles, and many more invertebrates. Species diversity was determined by comparing the variety of insect groups and invertebrates found in each area.

The results, Greenwald said, were completely unexpected.

“We thought the salamanders especially would be very sensitive to areas with deer because in those areas the whole undergrowth is basically gone. So we thought these creatures were going to be much more abundant in the fenced exclosures because it is just bursting with plants and other studies have shown that amphibians prefer damp, covered areas,” she said.

Instead, they found that many of the species studied favored the unfenced areas where deer grazed frequently. Pill bugs, centipedes, millipedes, and beetles were found equally in grazed and fenced areas, but many other creatures were found in greater numbers in grazed areas.

Researchers found nearly three times as many red-backed salamanders and five-and-a-half times more snakes in sites with deer than those without deer. Among invertebrates, snails were 11 percent more abundant in grazed areas than in exclosures and the diversity of arthropods was also 14 percent greater in these areas.

Greenwald speculates that the areas with higher deer populations may appear to lack the high variety of low-lying plants found in exclosures, but the deer may be creating a richer soil mixture through their droppings. This rich soil may be benefiting some plants in the area, which in turn is attracting a larger diversity of insects and invertebrates.

Salamanders and snakes may then be following these creatures, creating a more diverse animal population overall in areas with deer.

“Another possibility is that we are observing a ‘refuge effect,’ where animals in the grazed areas are more likely to use the cover objects than animals in the ungrazed areas. If the ground in the exclosures really is more favorable, as we originally thought, maybe the animals there just have no need for our artificial cover boards,” Greenwald said.

But no matter what the reason, she cautions that the take-home message of the study is that officials need to understand the forest ecosystem before making decisions about wildlife management.

“We need to be aware of what’s happening in these forest ecosystems. Culling deer may cascade into affecting plants, salamanders, and other creatures in ways we can’t even imagine. So before we start removing deer we should study what’s really happening in these areas because there are a whole host of other issues that go along with culling,” she said.

Greenwald conducted the study with Thomas Waite, former associate professor of evolution, ecology and organismal biology at Ohio State, and Lisa Petit of the Cuyahoga Valley National Park.

Katherine Greenwald | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Snakes amphibians deer populations forest ecosystems reptiles salamanders

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>