Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoke signals: How burning plants tell seeds to rise from the ashes

30.04.2013
Salk researchers solve an ecological mystery of how smoke and ash from forest fires

In the spring following a forest fire, trees that survived the blaze explode in new growth and plants sprout in abundance from the scorched earth. For centuries, it was a mystery how seeds, some long dormant in the soil, knew to push through the ashes to regenerate the burned forest.

In the April 23 early online edition of the Proceedings of the National Academy of Sciences (PNAS), scientists at the Salk Institute and the University of California, San Diego, report the results of a study that answers this fundamental "circle of life" question in plant ecology. In addition to explaining how fires lead to regeneration of forests and grasslands, their findings may aid in the development of plant varieties that help maintain and restore ecosystems that support all human societies.

"This is a very important and fundamental process of ecosystem renewal around the planet that we really didn't understand," says co-senior investigator Joseph P. Noel, professor and director of Salk's Jack H. Skirball Center for Chemical Biology and Proteomics. "Now we know the molecular triggers for how it occurs."

Noel's co-senior investigator on the project, Joanne Chory, professor and director of Salk's Plant Molecular and Cellular Biology Laboratory, says the team found the molecular "wake-up call" for burned forests. "What we discovered," she says, "is how a dying plant generates a chemical message for the next generation, telling dormant seeds it's time to sprout."

While controlled burns are common today, they weren't 50 years ago. The U.S. park service actively suppressed forest fires until they realized that the practice left the soil of mature forests lacking important minerals and chemicals. This created an intensely competitive environment that was ultimately detrimental to the entire forest ecosystem.

"When Yellowstone National Park was allowed to burn in 1988, many people felt that it would never be restored to its former beauty," says James J. La Clair, a researcher from the Department of Chemistry and Biochemistry at the University of California who worked on the project. "But by the following spring, when the rains arrived, there was a burst of flowering plants amid the nutrient-rich ash and charred ground."

In previous studies, scientists had discovered that special chemicals known as karrikins are created as trees and shrubs burn during a forest fire and remain in the soil after the fire, ensuring the forest will regenerate.

The Salk scientists' new study sought to uncover exactly how karrikins stimulate new plant growth. First, the researchers determined the structure of a plant protein know as KAI2, which binds to karrikin in dormant seeds. Then, comparing the karrikin-bound KAI2 protein to the structure of an unbound KAI2 protein allowed the researchers to speculate how KAI2 allows a seed to perceive karrikin in its environment.

The chemical structures the team solved revealed all the molecular contacts between karrikin and KAI2, according to Salk research associate Yongxia Guo, a structural enzymologist and one of the study's lead investigators. "But, more than that," Gou says, "we also now know that when karrikin binds to the KAI2 protein it causes a change in its shape."

The studies' other lead investigator, Salk research associate and plant geneticist Zuyu Zheng, says this karrikin-induced shape change may send a new signal to other proteins in the seeds. "These other protein players," he says, "together with karrikin and KAI2, generate the signal causing seed germination at the right place and time after a wildfire."

Guo and Zheng, a married couple working as postdoctoral researchers in the Noel and Chory labs, respectively, came up with the idea for the study while talking over dinner. La Clair then joined the study, contributing his chemistry expertise.

While the new findings were made in Arabidopsis, a model organism that many plant researchers study, the scientists say the same karrikin-KAI2 regeneration strategy is undoubtedly found in many plant species.

"In plants, one member of this family of enzymes has been recruited somehow through natural selection to bind to this molecule in smoke and ash and generate this signal," says Noel, holder of Salk's Arthur and Julie Woodrow Chair and a Howard Hughes Medical Institute investigator. "KAI2 likely evolved when plant ecosystems started to flourish on the terrestrial earth and fire became a very important part of ecosystems to free up nutrients locked up in dying and dead plants."

More research is needed to understand exactly how the change in shape of the KAI2 protein activates a genetic pathway that regulates germination, says Chory, the Howard H. and Maryam R. Newman Chair in Plant Biology and a Howard Hughes Medical Institute investigator. "But this finding is an absolutely critical step in understanding this genetic program and how plant ecosystems, forests and grasslands renew themselves."

The work was supported by the National Institutes of Health grants 5R01GM52413 and GM094428, National Science Foundation awards EEC-0813570 and MCB-0645794 and the Howard Hughes Medical Institute.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>