Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Smell Play a Role in the Origin of New Bird Species?

26.03.2010
Two recently diverged populations of a southern California songbird produce unique odors, suggesting smell could contribute to the reproductive isolation that accompanies the origin of new bird species. The Indiana University Bloomington study of organic compounds present in the preen oils of Dark-eyed Juncos is described in this month's Behavioral Ecology.

"There's so much we don't know about the role of smell in bird behavior," said biologist Danielle Whittaker, the study's lead author. "Differences in smell could be affecting sexual behavior, parental care and even contribute to speciation."

Whittaker is a postdoctoral researcher in IU Bloomington biologist Ellen Ketterson's research group.

Led by Whittaker, a team of IU Bloomington biologists and chemists examined the chemical composition of preen oil, which is a compound birds secrete and spread around their bodies to straighten, protect and waterproof their feathers. To analyze the odor chemistry of preen oil, the scientists isolated 19 volatile molecules that can achieve a gaseous, more sniff-friendly state. The chemical isolation and analysis portion of the interdisciplinary project was led by IU Bloomington Department of Chemistry Distinguished Professor Milos Novotny and Senior Scientist Helena Soini.

The scientists found that each junco possesses a unique and recognizable odor profile that was stable over a two-week period and that could be used to distinguish it from other individuals. The odor profiles of male birds differed from those of female birds, and birds' odor profiles differed depending on which population they were from.

"This is the most comprehensive study of its kind," Whittaker said. "And as far as we know, it is the first time anyone has looked closely at these chemical compounds at the population level in any bird."

Last year, Whittaker, Ketterson, and others reported in the Journal of Avian Biology that juncos can use preen oils to distinguish members of their own species from other species, and between individuals of their own species. The present Behavioral Ecology study went a step further to see whether the chemical composition of preen oil varies among individuals, sexes and populations -- which might be meaningful in an evolutionary context.

The team collected juvenile juncos from two populations, one that resides in and around the University of California San Diego campus in La Jolla, Calif., and another that lives in the Laguna Mountains, about 42 miles east. After capture, the birds were transported to aviaries in Bloomington, Ind., and raised under identical environmental conditions. The scientists used gas chromatography-mass spectrometry to isolate 19 volatile compounds from the preen oils which are secreted from the birds' uropygial glands near the base of the tail.

The researchers confirmed that individual birds sampled over time produce levels of each of the volatile compounds that remain more or less constant. They also found gross differences between males and females, and between juncos from the UC San Diego population and birds from the mountains. These population differences were found even though the birds were raised in identical conditions, suggesting that the odors have a genetic, rather than an environmental or developmental basis.

The particular suite of 19 compounds is, as far as the scientists know, unique to juncos. However, this area of research is so new that odor chemistry profiles have been documented for only a few species. This field of research is growing rapidly as biologists realize the potential importance of scent in bird communication and evolution.

Until just a few years ago, most bird biologists believed that smell played little or no role in bird behavior. The olfactory bulb -- a portion of vertebrate brain known to interpret odors -- is small relative to birds' brain sizes. Birds also lack the vomeronasal organ that many mammals (and reptiles) use to sense pheromones specifically.

Then came the discovery that sea-faring petrels can smell so well that they can identify other birds through sense of smell alone. This discovery kicked off a re-examination of several bird species, and preliminary results suggest smell in birds is a behavioral cue that has been overlooked for far too long.

"We still don't know how common it is for birds to use smell," Whittaker said. "The evidence so far suggests there is much for us to learn."

Also contributing to the report were biology graduate student Jonathan Atwell, IU Bloomington chemistry graduate student Craig Hollars. Milos Novotny, Soini, and Hollars are members of the Institute for Pheromone Research, which Novotny directs. Ketterson, Novotny and Soini are also members of IU's Center for the Integrative Study of Animal Behavior.

The project was funded by grants from the National Science Foundation, the National Institutes of Health, and the IU Faculty Research Support Program, with additional support from the Indiana METACyt Initiative and funds from the Lilly Chemistry Alumni Chair.

To speak with Whittaker, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>