Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small Alga – Great Effect


In a new study, scientists from the ZMT have noted significant changes in the calcareous skeleton of the alga Halimeda as a result of a more acidic water environment. These may have an impact on the formation of tropical beaches and islands, as the calcareous structures of Halimeda are an important component of their sediments.

The acidification of the oceans is increasing inexorably. In particular, marine organisms with calcareous skeletons such as sea shells, corals or calcareous algae can suffer. In a new study, scientists from the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have noted significant changes in the calcareous skeleton of the green alga Halimeda as a result of a more acidic water environment.

Halimeda opuntia

Photo: A. Wizemann, ZMT

Halimeda with calcareous needles

Photo: A. Wizemann, ZMT

These changes are an indication of the processes that occur at a lower pH level – that is, in more acidic water – in the skeleton of the calcareous alga. Since sandy beaches in many tropical regions largely consist of skeletal fragments of these algae, these changes may have an impact on the composition and formation of tropical beaches and islands.

In the seawater facility of the ZMT, the researchers exposed the Halimeda algae to water with a lower pH level, as may be found in many regions of the oceans 40 to 50 years from now. For the first time, the research group focused on the structure of the algal skeleton.

“While many studies on calcareous algae or corals have thus far only compared the quantity of calcareous skeleton produced at different pH values, we concentrated on the microstructure of the skeleton. For this purpose, we used our scanning electron microscope which can magnify the structures of animals and plants up to 100,000 times“, said biologist Andre Wizemann, one of the authors of the study.

As the researchers observed, the Halimeda alga forms a skeleton of fine calcareous needles, which are formed during the day at the cellular surface. At night these needles recrystallise – they partially dissolve and fuse to a dense, compact skeleton armor. Thus, the alga protects itself from predators and gains stability, so that it can survive at higher water flow, for example at the edges of coral reefs.

However, such a massive skeleton can only form if the calcium saturation in the surrounding water is high. At a lower pH level the content of calcium carbonate in the sea decreases. “In the algae from the more acidic water we mainly found just the fine needles which were formed by the algal cells. While the calcium production of the alga was not hindered, it lacked the solid support structure because the process of recrystallisation was disturbed,” said Wizemann.

The small Halimeda algae may not seem very spectacular at first glance. “In warmer coastal regions, however, the calcareous structures of the dead Halimeda algae are an important component of sediments,” Wizemann added. “On the Caribbean islands their skeletal parts can comprise up to 50% of the beach sand.” If their calcareous skeleton is weak and brittle, this can have far-reaching consequences. The fine calcareous needles dissolve more easily in water than a compact skeleton does. Therefore, not much remains of the algae after their death. This in turn could have a negative effect on the formation of tropical beaches and coral reef islands, which consist largely of calcareous sediments.

Wizemann, A., Meyer, F.W., Hofmann, L.C., Wild, C., Westphal, H. (2015). Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34(3), pp. 941-954. DOI: 10.1007/s00338-015-1288-9.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>