Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Alga – Great Effect

22.09.2015

In a new study, scientists from the ZMT have noted significant changes in the calcareous skeleton of the alga Halimeda as a result of a more acidic water environment. These may have an impact on the formation of tropical beaches and islands, as the calcareous structures of Halimeda are an important component of their sediments.

The acidification of the oceans is increasing inexorably. In particular, marine organisms with calcareous skeletons such as sea shells, corals or calcareous algae can suffer. In a new study, scientists from the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have noted significant changes in the calcareous skeleton of the green alga Halimeda as a result of a more acidic water environment.


Halimeda opuntia

Photo: A. Wizemann, ZMT


Halimeda with calcareous needles

Photo: A. Wizemann, ZMT

These changes are an indication of the processes that occur at a lower pH level – that is, in more acidic water – in the skeleton of the calcareous alga. Since sandy beaches in many tropical regions largely consist of skeletal fragments of these algae, these changes may have an impact on the composition and formation of tropical beaches and islands.

In the seawater facility of the ZMT, the researchers exposed the Halimeda algae to water with a lower pH level, as may be found in many regions of the oceans 40 to 50 years from now. For the first time, the research group focused on the structure of the algal skeleton.

“While many studies on calcareous algae or corals have thus far only compared the quantity of calcareous skeleton produced at different pH values, we concentrated on the microstructure of the skeleton. For this purpose, we used our scanning electron microscope which can magnify the structures of animals and plants up to 100,000 times“, said biologist Andre Wizemann, one of the authors of the study.

As the researchers observed, the Halimeda alga forms a skeleton of fine calcareous needles, which are formed during the day at the cellular surface. At night these needles recrystallise – they partially dissolve and fuse to a dense, compact skeleton armor. Thus, the alga protects itself from predators and gains stability, so that it can survive at higher water flow, for example at the edges of coral reefs.

However, such a massive skeleton can only form if the calcium saturation in the surrounding water is high. At a lower pH level the content of calcium carbonate in the sea decreases. “In the algae from the more acidic water we mainly found just the fine needles which were formed by the algal cells. While the calcium production of the alga was not hindered, it lacked the solid support structure because the process of recrystallisation was disturbed,” said Wizemann.

The small Halimeda algae may not seem very spectacular at first glance. “In warmer coastal regions, however, the calcareous structures of the dead Halimeda algae are an important component of sediments,” Wizemann added. “On the Caribbean islands their skeletal parts can comprise up to 50% of the beach sand.” If their calcareous skeleton is weak and brittle, this can have far-reaching consequences. The fine calcareous needles dissolve more easily in water than a compact skeleton does. Therefore, not much remains of the algae after their death. This in turn could have a negative effect on the formation of tropical beaches and coral reef islands, which consist largely of calcareous sediments.

Publication
Wizemann, A., Meyer, F.W., Hofmann, L.C., Wild, C., Westphal, H. (2015). Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34(3), pp. 941-954. DOI: 10.1007/s00338-015-1288-9.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>