Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Alga – Great Effect

22.09.2015

In a new study, scientists from the ZMT have noted significant changes in the calcareous skeleton of the alga Halimeda as a result of a more acidic water environment. These may have an impact on the formation of tropical beaches and islands, as the calcareous structures of Halimeda are an important component of their sediments.

The acidification of the oceans is increasing inexorably. In particular, marine organisms with calcareous skeletons such as sea shells, corals or calcareous algae can suffer. In a new study, scientists from the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen have noted significant changes in the calcareous skeleton of the green alga Halimeda as a result of a more acidic water environment.


Halimeda opuntia

Photo: A. Wizemann, ZMT


Halimeda with calcareous needles

Photo: A. Wizemann, ZMT

These changes are an indication of the processes that occur at a lower pH level – that is, in more acidic water – in the skeleton of the calcareous alga. Since sandy beaches in many tropical regions largely consist of skeletal fragments of these algae, these changes may have an impact on the composition and formation of tropical beaches and islands.

In the seawater facility of the ZMT, the researchers exposed the Halimeda algae to water with a lower pH level, as may be found in many regions of the oceans 40 to 50 years from now. For the first time, the research group focused on the structure of the algal skeleton.

“While many studies on calcareous algae or corals have thus far only compared the quantity of calcareous skeleton produced at different pH values, we concentrated on the microstructure of the skeleton. For this purpose, we used our scanning electron microscope which can magnify the structures of animals and plants up to 100,000 times“, said biologist Andre Wizemann, one of the authors of the study.

As the researchers observed, the Halimeda alga forms a skeleton of fine calcareous needles, which are formed during the day at the cellular surface. At night these needles recrystallise – they partially dissolve and fuse to a dense, compact skeleton armor. Thus, the alga protects itself from predators and gains stability, so that it can survive at higher water flow, for example at the edges of coral reefs.

However, such a massive skeleton can only form if the calcium saturation in the surrounding water is high. At a lower pH level the content of calcium carbonate in the sea decreases. “In the algae from the more acidic water we mainly found just the fine needles which were formed by the algal cells. While the calcium production of the alga was not hindered, it lacked the solid support structure because the process of recrystallisation was disturbed,” said Wizemann.

The small Halimeda algae may not seem very spectacular at first glance. “In warmer coastal regions, however, the calcareous structures of the dead Halimeda algae are an important component of sediments,” Wizemann added. “On the Caribbean islands their skeletal parts can comprise up to 50% of the beach sand.” If their calcareous skeleton is weak and brittle, this can have far-reaching consequences. The fine calcareous needles dissolve more easily in water than a compact skeleton does. Therefore, not much remains of the algae after their death. This in turn could have a negative effect on the formation of tropical beaches and coral reef islands, which consist largely of calcareous sediments.

Publication
Wizemann, A., Meyer, F.W., Hofmann, L.C., Wild, C., Westphal, H. (2015). Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34(3), pp. 941-954. DOI: 10.1007/s00338-015-1288-9.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.zmt-bremen.de

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>