Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The “slippery slope to slime”: Overgrown algae causing coral reef declines

20.09.2012
Researchers at Oregon State University for the first time have confirmed some of the mechanisms by which overfishing and nitrate pollution can help destroy coral reefs – it appears they allow an overgrowth of algae that can bring with it unwanted pathogens, choke off oxygen and disrupt helpful bacteria.

These “macroalgae,” or large algal species, are big enough to essentially smother corals. They can get out of control when sewage increases nitrate levels, feeds the algae, and some of the large fish that are most effective at reducing the algal buildup are removed by fishing.

Scientists found that macroalgal competition decreased coral growth rates by about 37 percent and had other detrimental effects. Other research has documented some persistent states of hypoxia.

Researchers call this process “the slippery slope to slime.”

Findings on the research were just published in PLoS One, a professional journal. The work was supported by the National Science Foundation.

“There is evidence that coral reefs around the world are becoming more and more dominated by algae,” said Rebecca Vega-Thurber, an OSU assistant professor of microbiology. “Some reefs are literally covered up in green slime, and we wanted to determine more precisely how this can affect coral health.”

The new study found that higher levels of algae cause both a decrease in coral growth rate and an altered bacterial community. The algae can introduce some detrimental pathogens to the coral and at the same time reduce levels of helpful bacteria. The useful bacteria are needed to feed the corals in a symbiotic relationship, and also produce antibiotics that can help protect the corals from other pathogens.

One algae in particular, Sargassum, was found to vector, or introduce a microbe to corals, a direct mechanism that might allow introduction of foreign pathogens.

There are thousands of species of algae, and coral reefs have evolved with them in a relationship that often benefits the entire tropical marine ecosystem. When in balance, some algae grow on the reefs, providing food to both small and large fish that nibble at the algal growth. But the algal growth is normally limited by the availability of certain nutrients, especially nitrogen and phosphorus, and some large fish such as parrot fish help eat substantial amounts of algae and keep it under control.

All of those processes can be disrupted when algal growth is significantly increased by the nutrients and pollution from coastal waste water, and overfishing reduces algae consumption at the same time.

“This shows that some human actions, such as terrestrial pollution or overfishing, can affect everything in marine ecosystems right down to the microbes found on corals,” Vega-Thurber said. “We’ve suspected before that increased algal growth can bring new diseases to corals, and now for the first time have demonstrated in experiments these shifts in microbial communities.”

Some mitigation of the problem is already being done on high-value coral reefs by mechanically removing algae, Vega-Thurber said, but the best long-term solution is to reduce pollution and overfishing so that a natural balance can restore itself.

Corals are one of Earth’s oldest animal life forms, evolving around 500 million years ago. They host thousands of species of fish and other animals, are a major component of marine biodiversity in the tropics, and are now in decline around the world. Reefs in the Caribbean Sea have declined more than 80 percent in recent decades.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

The study this story is based on is available online: http://bit.ly/QkeZkp

Rebecca Vega-Thurber | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: OSU Overgrown PLoS One coral growth coral reef marine ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>