Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Any way you slice it, warming climate is affecting Cascades snowpack

There has been sharp disagreement in recent years about how much, or even whether, winter snowpack has declined in the Cascade Mountains of Washington and Oregon during the last half-century.

But new research leaves little doubt that a warmer climate has a significant effect on the snowpack, as measured by water content on April 1, even if other factors keep year-to-year measurements close to normal for a period of years.

Water content can vary greatly depending on temperature and other conditions at the time of snowfall. Typically an inch of snow at temperatures near freezing will contain significantly more water than an inch of snow a colder temperatures.

"All things being equal, if you make it 1 degree Celsius warmer, then 20 percent of the snowpack goes away for the central Puget Sound basin, the area we looked at," said Joseph Casola, a University of Washington doctoral student in atmospheric sciences.

That means that even in years with normal or above-normal snowfall, the snowfall probably would have been even greater except for climate warming. The finding has implications for various water-dependent resources, including drinking water supplies, fisheries, irrigation and hydropower, and it could be applicable to other areas of the Cascades in the Pacific Northwest.

Annual snowfall variability makes it difficult to plot a meaningful trend, Casola said. Starting in a year with high snow accumulation will imply a significant decrease over time, while starting in a year with average or low snow totals will imply little change or even an increase. So, for example, measuring from 1944 to 2005 shows just a slight decline in snowpack but changing the starting year to 1950 more than triples the decline.

However, the measurements also show a slight increase in the last 30 years, a period of significant climate warming. That is probably because trend measurements include declines from climate warming as well as increases and decreases from other factors. For example, several of the lowest-snow winters in the Puget Sound area were during El Niño years, while many of the highest-snow winters were during La Niña years. Those two climate phenomena in the South Pacific can have significant impact on Northwest weather. Likewise, the amount of snow can be affected by a long-term climate cycle in the North Pacific called the Pacific Decadal Oscillation, which changes between positive and negative phases on the order of every 20 years.

"Global warming can be reducing your snowpack over time, but other factors can mask the impact of the warming," Casola said. "Conversely, in a period of dry years global warming would tend to exacerbate the effects."

The new research used four different methods to examine decades-long records of water contained in Cascades snowpack in the central Puget Sound basin on April 1 of each year. Scientists used simple geometry to estimate temperature sensitivity of snowpack, made detailed analysis of seasonal snowpack and temperature data, used a hydrological model to examine the data, and analyzed daily temperature and precipitation measurements to estimate water content of snowpack on April 1.

"If you assume precipitation is the same every year and look at the effects of temperature alone, all the ways we examined the data converge at about a 20 percent decline in snowpack for each degree Celsius of temperature increase," said Casola.

He is lead author of a paper detailing the work, part of his doctoral thesis, which is being published online May 14 in Journal of Climate, published by the American Meteorological Society. Co-authors, all from the UW, are Lan Cuo, Ben Livneh, Dennis Lettenmaier, Mark Stoelinga, Philip Mote and John M. Wallace.

While there still is uncertainty in the trend data, people can expect to see lower spring snowpack more frequently in the future, with low-snow winters bringing low-flow summers, Casola said. Winter precipitation in the Cascades is likely to be similar to what is recorded now, but more of it will be rain.

Casola notes that businesses, resource manager, utilities and irrigators increasingly accept the notion of climate change, and many try to incorporate the information into long-term plans.

"Now they want to know, 'What does this mean for my operation?'" he said. "People are becoming more savvy to the issue of climate change. They want to be aware of changes that might be coming and to identify areas in their systems that perhaps need to be modified."

The work was funded by the National Science Foundation and the Joint Institute for the Study of the Atmosphere and Ocean at the UW.

For more information, contact Casola at 206-543-5754 or

At the American Meteorological Society, contact Stephanie Kenitzer at 425-432-2192 or

Vince Stricherz | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>