Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple Filter Delivers Clean, Safe Drinking Water -- Potentially to Millions

09.03.2009
A UNC Charlotte researcher is developing a "rapid sand" filter that could provide a simple means of providing fresh water to millions upon millions of people in developing countries.

As an efficient, inexpensive, low-tech way to treat water, Dr. James Amburgey’s research could bring clean, safe drinking water to potentially millions upon millions of people.

Simplicity is the primary objective of the rapid sand filter system Amburgey is developing. “The idea is to make it as simple as possible,” he said. “All that is needed is some PVC pipe, sand and inexpensive treatment chemicals. The only way to practically deploy a system to the people of less developed countries is for it to be inexpensive and simple.”

Amburgey, an assistant professor of Civil and Environmental Engineering, specializes in drinking and recreational water treatment. He has done work in the past with slow sand filters, but his latest research with rapid sand filters is demonstrating the ability to clean water much more effectively and 30 to 50 times faster.

“One significant challenge with sand filters is in removing Cryptosporidium oocysts,” Amburgey said. “One ‘crypto’ is five microns in diameter, but the gaps between grains of sand are approximately 75 microns. So, we have to get the crypto to stick to the sand grains.”

To achieve this, Amburgey has developed a chemical pretreatment scheme based on ferric chloride and a pH buffer that is added to the water. In its natural state, Cryptosporidium is negatively charged, as are sand grains, so they repel one another. The chemical pretreatment changes the Cryptosporidium surface charge to near neutral, which eliminates the natural electrostatic repulsion and causes it to be attracted to and stick to the sand grains via van der Waals forces.

In research using a prototype of this system in his lab, Amburgey and his students have done preliminary tests on waters from local rivers, creeks and wastewater treatment plants. Their results are typically greater than 99 percent removal for Cryptosporidium-sized particles.

“A common problem in drinking water treatment facilities is that changing water quality requires changes in the chemical pretreatment dosages,” Amburgey said. “Our tests, so far, have shown that this system utilizing only a single set of chemical pretreatment dosages is effective on all waters tested to date.”

Another advantage of the system is that it can be adapted by using local sands or crushed rock that are indigenous to a particular region of the world.

Paul Nowell | Newswise Science News
Further information:
http://www.uncc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>