Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple Filter Delivers Clean, Safe Drinking Water -- Potentially to Millions

09.03.2009
A UNC Charlotte researcher is developing a "rapid sand" filter that could provide a simple means of providing fresh water to millions upon millions of people in developing countries.

As an efficient, inexpensive, low-tech way to treat water, Dr. James Amburgey’s research could bring clean, safe drinking water to potentially millions upon millions of people.

Simplicity is the primary objective of the rapid sand filter system Amburgey is developing. “The idea is to make it as simple as possible,” he said. “All that is needed is some PVC pipe, sand and inexpensive treatment chemicals. The only way to practically deploy a system to the people of less developed countries is for it to be inexpensive and simple.”

Amburgey, an assistant professor of Civil and Environmental Engineering, specializes in drinking and recreational water treatment. He has done work in the past with slow sand filters, but his latest research with rapid sand filters is demonstrating the ability to clean water much more effectively and 30 to 50 times faster.

“One significant challenge with sand filters is in removing Cryptosporidium oocysts,” Amburgey said. “One ‘crypto’ is five microns in diameter, but the gaps between grains of sand are approximately 75 microns. So, we have to get the crypto to stick to the sand grains.”

To achieve this, Amburgey has developed a chemical pretreatment scheme based on ferric chloride and a pH buffer that is added to the water. In its natural state, Cryptosporidium is negatively charged, as are sand grains, so they repel one another. The chemical pretreatment changes the Cryptosporidium surface charge to near neutral, which eliminates the natural electrostatic repulsion and causes it to be attracted to and stick to the sand grains via van der Waals forces.

In research using a prototype of this system in his lab, Amburgey and his students have done preliminary tests on waters from local rivers, creeks and wastewater treatment plants. Their results are typically greater than 99 percent removal for Cryptosporidium-sized particles.

“A common problem in drinking water treatment facilities is that changing water quality requires changes in the chemical pretreatment dosages,” Amburgey said. “Our tests, so far, have shown that this system utilizing only a single set of chemical pretreatment dosages is effective on all waters tested to date.”

Another advantage of the system is that it can be adapted by using local sands or crushed rock that are indigenous to a particular region of the world.

Paul Nowell | Newswise Science News
Further information:
http://www.uncc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>