Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens tests eHighway system in California

06.08.2014
  • Siemens sets up demonstration project in conjunction with Volvo
  • Electrified trucks designed to cut air pollution in California
  • Test results available in summer 2016

Siemens is to conduct trials on a two-mile stretch of highway after installing a catenary system for electric and hybrid trucks in the vicinity of the largest US ports of Los Angeles and Long Beach.


In the context of the research project ENUBA (Electromobility in heavy commercial vehicles to reduce the environmental impact on densely populated areas), Siemens produced an holistic concept for the electrification of HGV traffic by means catenaries and to test the technical feasibility of the system on a specially built test track in the north of Berlin, Germany.

The company was awarded the associated contract by Southern California's South Coast Air Quality Management District (SCAQMD). The objective is to completely eliminate local emissions such as nitrogen oxides and to reduce the consumption of fossil fuels and cut the operating costs of trucks.

The test results should be available in the summer of 2016, and will indicate the suitability of the systems for future commercial use. The ports of Los Angeles and Long Beach are seeking an emission-free solution ("Zero Emission I-710 Project") for a section of Highway 710, which carries a high proportion of shuttle truck traffic. The 30 kilometer route links the two ocean ports and the railroad transshipment centers inland.

As part of the installation of the eHighway systems, two lanes of Alameda Street in the city of Carson, California, are being electrified via a catenary system. On the road, E-trucks equipped with hybrid drive and smart current collectors will be supplied with electricity from catenaries, offering local zero-emission operation.

In conjunction with vehicle manufacturer Mack, a member of the Volvo Group, and local truck conversion specialists, Siemens is developing up to four demonstration vehicles. The smart current collectors permit overtaking maneuvers and automatic hook-up and disconnection at speeds up to 90 km/h. On normal roads without overhead lines the vehicles make use of a hybrid system which can be operated alternatively with diesel, compressed natural gas or via a battery.

"Our highway technology eliminates local emissions and is an economically attractive solution for freight transport on shuttle truck routes," says Matthias Schlelein, head of Siemens Division Mobility and Logistics in the USA. "Long Beach and Los Angeles, the two US ports generating the most traffic, can benefit hugely from our technology."

"This project will help us evaluate the feasibility of a zero-emission cargo movement system using overhead catenaries," said Barry Wallerstein, SCAQMD's executive officer. "Southern California's air pollution is so severe that it needs, among other strategies, zero- and near-zero emission goods movement technologies to achieve clean air standards."

"I'm happy to see the Los Angeles region leading the way in bringing cutting edge technology to an increasingly important economic center," said Los Angeles Councilman Joe Buscaino. "The eHighway project is a great example of how electricity can help power the next generation of transportation systems while also providing cleaner air for our citizens in the process."

Further info, along with photo and video material may be found at: https://www.siemens.com/press/ENUBA-2

The Siemens Infrastructure & Cities Sector (Munich, Germany), with approximately 90,000 employees, focuses on sustainable and intelligent infrastructure technologies. Its offering includes products, systems and solutions for intelligent traffic management, rail-bound transportation, smart grids, power distribution, energy efficient buildings, and safety and security. The Sector comprises the divisions Building Technologies, Low and Medium Voltage, Mobility and Logistics, Rail Systems and Smart Grid. For more information visit http://www.siemens.com/infrastructure-cities

The Siemens Mobility and Logistics Division (Munich, Germany) is a leading international provider of integrated technologies that enable people and goods to be transported in an efficient, safe and environmentally-friendly manner. The areas covered include rail automation, intelligent traffic and transportation systems, and logistics solutions for airports, postal and parcel business. Through its portfolio the Division combines innovations with comprehensive industry know-how in its products, services and IT-based solutions. Further information can be found at http://www.siemens.com/mobility-logistics/

Reference Number: ICMOL20140812e

Contact

Ms. Silke Reh
Mobility and Logistics Division

Siemens AG

Otto-Hahn-Ring 6

81739  Munich

Germany

Tel: +49 (89) 636-630368

Silke Reh | Siemens Infrastructure & Cities

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>