Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape up quickly – applies to fish too!

30.09.2014

Fish can live in almost any aquatic environment on Earth, but when the climate changes and temperatures go up many species are pushed to the limit. The amount of time needed to adjust to new conditions could prove critical for how different species cope in the future, reveals a new study from researchers at the University of Gothenburg, published in the scientific journal Proceedings of the Royal Society B.

Climate change continues apace thanks to increasing levels of greenhouse gases in the atmosphere. The greenhouse effect has led not only to an increase in average temperatures but also to more extreme weather conditions, such as major heatwaves.


Erik Sandblom with a couple of shorthorn sculpins caught off Disko Island in Greenland.

More than just survival

In contrast to birds and mammals, fish are ectothermic, which means that their body temperature fluctuates in line with the temperature of their surroundings. Fish that live at different temperatures can generally do so because they are able to optimise their bodily functions to that particular temperature. Changes in the ambient temperature can therefore disrupt this balance.

"Previous research has focused almost exclusively on whether different species will be able to survive an increase in temperature or not," says Erik Sandblom, researcher at the University of Gothenburg's Department of Biological and Environmental Sciences. "We were interested in finding out how species that survive actually manage to do so, how long it takes and the limitations they have to contend with during the acclimation period."

Most vulnerable during the first few weeks

In the published trial the researchers simulated a temporary heatwave and then monitored how the physiology of the shorthorn sculpin, a common marine bottom-dwelling fish species, was affected. The results show that during the first week of the heatwave the fish were severely restricted and were forced to forego high-energy processes such as eating or swimming in order to survive.

"During the first few weeks of a sudden heatwave the fish do survive but are vulnerable to events that would otherwise pass without problem. Dealing with extra challenges such as escaping from predators or coping with disease can be fatal."

Amount of time decisive

The trial took eight weeks and the results show that the physiological load reduces with each passing week as the fish gradually manage to reset their bodily functions and acclimate to the new environment. The results also show that the "cost" to the fish correlates closely with how long it takes to adjust. In a future that is both warmer and more variable, it is therefore likely to be important not only to adjust to new conditions, but to do so quickly.

The research was carried out with: Michael Axelsson, Albin Gräns and Henrik Seth at the University of Gothenburg.

Contact:
Erik Sandblom
Researcher at the Department of Biological and Environmental Sciences
Tel: +46 (0)31 786 4548, +46 (0)703 286 358
E-mail: erik.sandblom@bioenv.gu.se

Weitere Informationen:

http://www.science.gu.se/english/News/News_detail//shape-up-quickly---applies-to...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>