Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape of lake basin is key factor in plankton disease epidemics in Midwest

06.05.2010
U-shaped lake bottoms promote disease 'hot spots' more than V-shaped ones

Of all the things that might control the onset of plankton disease epidemics in Michigan lakes, the shape of the lakes' bottoms might seem unlikely. But that's indeed the case, according to a paper published in the May issue of the journal BioScience.

"There are several explanations for what's going on," said Indiana University Bloomington biologist Spencer Hall, the paper's lead author.

"We're looking at the zooplankton that are infected, the fish and other creatures, the ecology, the limnology, and even the physics. Of all those explanations, the shape of the lake basins is the most powerful factor."

Also contributing to the paper are scientists from the National Science Foundation (NSF), the University of Illinois at Urbana-Champaign, the University of California at Santa Barbara and the Georgia Institute of Technology.

"This paper is a synthesis of research on a model system for the study of disease ecology," said limnologist Alan Tessier of NSF's Division of Environmental Biology.

"It combines limnological, epidemiological, ecological and evolutionary perspectives to address a general question about the occurrence of epidemics in nature," he said. "It also illustrates the value of interdisciplinary approaches to understanding the emergence of patterns in systems of complex biotic and abiotic interactions."

The disease in question is caused by a fungus in the water that infects the filter-feeder Daphnia dentifera, a water flea that plays a critical "grazer" role in many freshwater lakes in the U.S. Midwest.

Epidemics usually start in late summer or early fall.

The fungus slowly consumes the tiny crustacean's blood (hemolymph) and produces spores that fill all that remains.

For the fungal spores to make it to the next potential host, the Daphnia host's exoskeleton must be opened--and it must be opened in an area where the spores are exposed to living, uninfected Daphnia dentifera.

Whether that happens can be predicted by whether the lake bottom is V-shaped, with gently sloping sides, or U-shaped, with walls that descend rapidly away from shore.

The topography of lake bottoms has profound consequences for the lakes' ecology and movement of water that's driven by surface and subsurface temperatures.

Lakes with U-shaped bottoms have fewer near-shore nursery areas, and as a result, bluegill fish populations tend to be lower. Bluegill are a major Daphnia dentifera predator.

With fewer bluegill in lakes with U-shaped bottoms, Daphnia tend to be larger, and larger Daphnia have a higher chance of eating spores and becoming infected.

Fewer bluegill also means more Chaoborus, an invertebrate that is eaten by bluegill--and that itself eats Daphnia dentifera.

Unlike bluegill, which tend to eat Daphnia dentifera cleanly and excrete a heavy spoor that quickly sinks to the lake bottom (and probably out of the ecological picture), Chaoborus are "messy" eaters that chew up Daphnia and spit much of the exoskeleton--and spores contained in it--back out.

This invertebrate predator then spreads spores of the parasite and catalyzes epidemics.

With the scene set, all that's needed, Hall said, is a beginning.

"Physics gets the epidemic going," Hall said. "Chaoborus keeps it going."

As evening air and/or late summer storms cool the near-shore waters of U-shaped lake basins, the water sinks until it reaches waters of similar temperatures, at which point the waters move away from shore.

This creates a flow that brings nutrients (and latent spores) from shore out to the middle of the lake, where more Daphnia dentifera and Chaoborus live.

Daphnia dentifera filter feed, ingesting spores. Chaoborus eats the water fleas, breaking open husks and spewing spores into near-surface waters.

Some of the spores may sink to the lake bottom and out of the picture, but during the day, the warmth of summer and fall air keeps the near-surface waters turbulent. That creates a churning effect.

Spores are pulled upward and remain available for Daphnia dentifera to eat. Spore-containing waste produced by Chaoborus and bluegill near shore can re-feed the system in subsequent evenings, as cool air drives near-shore waters back to the lakes' centers.

"We think spores are pulled out to the water column [lake's center] by these flows, called 'gravity currents,'" Hall said. "Several physical factors inhibit gravity currents in V-shaped lakes."

The scientists believe that fungal disease epidemics seldom occur in lakes with V-shaped bottoms because dense bluegill populations prey intensely on both infected Daphnia dentifera and Chaoborus.

High predation intensity inhibits production and spread of infectious spores, thereby damping spread of epidemics in lakes with V-shaped bottoms.

"This research also gets at a bigger issue--how do the basic features of habitats drive major biological phenomena?" Hall said. "Understanding the relationship between the spatial aspects of habitats and what happens within them will be a major focus of future study."

Also contributing to the BioScience paper are Carla Cáceres and Christine Knight (UIUC), Robyn Smyth and Sally MacIntyre (UC Santa Barbara), Claes Becker (formerly of IU Bloomington, now at Sweco Environment, Stockholm), and Meghan Duffy (Georgia Tech).

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>