Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the Sewer to the Sound: Researchers Examining Effects of Household Titanium Dioxide Nanoparticles on Marine Ecosystems

25.10.2010
While swimmers and boaters along any shore consider the slimy green film that coats everything from rocks to docks as a nuisance, University of New Haven (UNH) chemical engineering student Nicole Reardon and Assistant Professor Shannon Ciston, Ph.D. think otherwise.

They view the slime, or biofilm, as a complex community that may hold the key to informing humanity of the true environmental impact of the chemical nanoparticles that find their way from area kitchens, baths and garages into Long Island Sound.

One such controversial compound is titanium dioxide, which is used to whiten and brighten a multitude of products, including candy, cosmetics, toothpaste and paint.

The underlying premise for testing the effects of titanium dioxide nanoparticles on biofilms is simple: when some chemicals are in nanoparticle form—ranging in size from 1/100th to 1/1000th of a human hair—they become bioactive, degrading and passing through cell membranes. Noting that “large” particles of titanium dioxide are considered safe by the FDA, Ciston and Reardon are interested in how nanoparticles of titanium dioxode affect marine ecosystems, particularly in terms of the humble biofilm. Reardon explains that while marine biofilms can be a bother, they are critical players in the oceanic environment. In addition to transforming nitrogen and carbon in ways that positively impact the greater food web, biofilms clean waste water by eating harmful organic matter and can even be used to clean oil and gasoline spills through bioremediation.

This fall, Reardon is continuing the biofilm research she began during her Summer Undergraduate Research Fellowship (SURF) at UNH. Reardon and her SURF advisor, Ciston, are collecting biofilm samples from a pier in West Haven, Connecticut, and Port Jefferson, Long Island, using a substrate system Reardon designed. Reardon harvests the biofilm that naturally attaches to the microscope slides in the submerged substrate and then heads to either the UNH lab or the State University of New York at Stony Brook, where fellow researchers are sharing their lab space and expertise. In the lab, Reardon stains the biofilm bacteria with fluorescent nucleic acid and, using digital image analysis, collects data on the depth and biomass of her test subjects. She also uses optical microscopy and scanning electron microscopy to identify characteristics of the biofilm structure and to identify the organisms.

Reardon and Ciston “dose” the samples with a composite material made of carbon nanotubes and titanium dioxide nanoparticles. Ultimately, they will compare the dosed biofilm with the untreated samples, determine how the microorganisms were affected and look at the greater implications for Long Island Sound.

As a chemical engineer with an environmental engineering background, Ciston notes she is fascinated by titanium dioxide and has been studying it, and its effects on organisms, for several years. She notes that titanium oxide is included in many cosmetic preparations to reflect light away from the skin and, as a pigment, is used to enhance the white color of certain foods, including dairy products and candy. It also brightens toothpaste and some medications, is used as a food additive and flavor enhancer, and used in paints for cars, boats, and airplanes.

A leader in experiential education, the University of New Haven provides its students with a valuable combination of solid liberal arts and real-world, hands-on professional training. Founded in 1920, UNH is a private, top-tier comprehensive university with an 80-acre main campus. The University has an enrollment of more than 5,900: approximately 1,700 graduate students and more than 4,200 undergraduates, 70 percent of whom reside in university housing. The University offers more than 80 undergraduate degrees and more than 25 graduate degrees through the College of Arts and Sciences, College of Business, the Henry C. Lee College of Criminal Justice and Forensic Sciences, the Tagliatela College of Engineering and University College. University of New Haven students study abroad through a variety of distinctive programs.

Julie Winkel | Newswise Science News
Further information:
http://www.newhaven.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>