Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage-derived nitrogen increasingly polluting Caribbean ecosystems

17.05.2011
American University researcher focusing on Guam to document process in action

Nitrogen pollution in our coastal ecosystems, the result of widespread use of synthetic agricultural fertilizers and of human sewage, leads to decreased water transparency, the loss of desirable fish species, and the emergence of toxic phytoplankton species—such as the algae behind the renowned "red tides" that kill fish.

The effects are particularly pronounced in the Gulf of Mexico and the Caribbean.

A study published in the journal Global Change Biology finds that while fertilizer has been the dominant source of nitrogen pollution in Caribbean coastal ecosystems for the past 50 years, such pollution is on the decline, thanks in part to the introduction of more advanced, environmentally responsible agricultural practices during the last decade. But now, sewage-derived nitrogen is increasingly becoming the top source of such pollution in those areas.

"We can't simply say our coastal ecosystem is being polluted by nitrogen," said Kiho Kim, one of the study's authors and chair of environmental science at American University. "The consequences may be the same, but differentiating the source of the pollutants is critical to crafting sustainable solutions—you can't fix a problem if you don't know what's causing it."

Through a chemical analysis of 300 coral samples from the Smithsonian Institution's National Museum of Natural History's Invertebrate Zoology Collection, Kim and some American University graduate students reconstructed a record of nitrogen inputs into the Caribbean over the last 150 years. Agricultural and sewage pollution create different signatures in organisms like coral.

"We determined that poor stormwater management and wastewater treatment were really to blame over the last decade for nitrogen pollution in the Caribbean," said Kim. "Our next step is to document this process in action."

To do this, Kim will focus on coral samples from the coastal areas of Guam, a small Pacific island that during the next four years will experience a population increase of 20 percent as the U.S. military relocates Marines from Okinawa, Japan to Guam.

Guam already has poor waste water infrastructure, and the influx of military personnel will further strain the island's resources. For Kim, the transition presents a unique opportunity to observe and document, in real time, the impact of increased sewage-derived nitrogen on the health of the coral reefs. He has already collected some baseline data in Guam, thanks to a small grant from the National Oceanic and Atmospheric Administration.

The Marines' translocation has recently slowed a bit, partially because of the earthquake and tsunami in Japan.

"This means that we will have time to collect more comprehensive baseline data," said Kim, who will return to Guam this summer to perform another set of sample and data collections with his colleague at the University of Guam.

American University is a leader in global education, enrolling a diverse student body from throughout the United States and nearly 140 countries. Located in Washington, D.C., the university provides opportunities for academic excellence, public service, and internships in the nation's capital and around the world.

Maggie Barrett | EurekAlert!
Further information:
http://www.american.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>