Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage-derived nitrogen increasingly polluting Caribbean ecosystems

17.05.2011
American University researcher focusing on Guam to document process in action

Nitrogen pollution in our coastal ecosystems, the result of widespread use of synthetic agricultural fertilizers and of human sewage, leads to decreased water transparency, the loss of desirable fish species, and the emergence of toxic phytoplankton species—such as the algae behind the renowned "red tides" that kill fish.

The effects are particularly pronounced in the Gulf of Mexico and the Caribbean.

A study published in the journal Global Change Biology finds that while fertilizer has been the dominant source of nitrogen pollution in Caribbean coastal ecosystems for the past 50 years, such pollution is on the decline, thanks in part to the introduction of more advanced, environmentally responsible agricultural practices during the last decade. But now, sewage-derived nitrogen is increasingly becoming the top source of such pollution in those areas.

"We can't simply say our coastal ecosystem is being polluted by nitrogen," said Kiho Kim, one of the study's authors and chair of environmental science at American University. "The consequences may be the same, but differentiating the source of the pollutants is critical to crafting sustainable solutions—you can't fix a problem if you don't know what's causing it."

Through a chemical analysis of 300 coral samples from the Smithsonian Institution's National Museum of Natural History's Invertebrate Zoology Collection, Kim and some American University graduate students reconstructed a record of nitrogen inputs into the Caribbean over the last 150 years. Agricultural and sewage pollution create different signatures in organisms like coral.

"We determined that poor stormwater management and wastewater treatment were really to blame over the last decade for nitrogen pollution in the Caribbean," said Kim. "Our next step is to document this process in action."

To do this, Kim will focus on coral samples from the coastal areas of Guam, a small Pacific island that during the next four years will experience a population increase of 20 percent as the U.S. military relocates Marines from Okinawa, Japan to Guam.

Guam already has poor waste water infrastructure, and the influx of military personnel will further strain the island's resources. For Kim, the transition presents a unique opportunity to observe and document, in real time, the impact of increased sewage-derived nitrogen on the health of the coral reefs. He has already collected some baseline data in Guam, thanks to a small grant from the National Oceanic and Atmospheric Administration.

The Marines' translocation has recently slowed a bit, partially because of the earthquake and tsunami in Japan.

"This means that we will have time to collect more comprehensive baseline data," said Kim, who will return to Guam this summer to perform another set of sample and data collections with his colleague at the University of Guam.

American University is a leader in global education, enrolling a diverse student body from throughout the United States and nearly 140 countries. Located in Washington, D.C., the university provides opportunities for academic excellence, public service, and internships in the nation's capital and around the world.

Maggie Barrett | EurekAlert!
Further information:
http://www.american.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>