Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage-derived nitrogen increasingly polluting Caribbean ecosystems

17.05.2011
American University researcher focusing on Guam to document process in action

Nitrogen pollution in our coastal ecosystems, the result of widespread use of synthetic agricultural fertilizers and of human sewage, leads to decreased water transparency, the loss of desirable fish species, and the emergence of toxic phytoplankton species—such as the algae behind the renowned "red tides" that kill fish.

The effects are particularly pronounced in the Gulf of Mexico and the Caribbean.

A study published in the journal Global Change Biology finds that while fertilizer has been the dominant source of nitrogen pollution in Caribbean coastal ecosystems for the past 50 years, such pollution is on the decline, thanks in part to the introduction of more advanced, environmentally responsible agricultural practices during the last decade. But now, sewage-derived nitrogen is increasingly becoming the top source of such pollution in those areas.

"We can't simply say our coastal ecosystem is being polluted by nitrogen," said Kiho Kim, one of the study's authors and chair of environmental science at American University. "The consequences may be the same, but differentiating the source of the pollutants is critical to crafting sustainable solutions—you can't fix a problem if you don't know what's causing it."

Through a chemical analysis of 300 coral samples from the Smithsonian Institution's National Museum of Natural History's Invertebrate Zoology Collection, Kim and some American University graduate students reconstructed a record of nitrogen inputs into the Caribbean over the last 150 years. Agricultural and sewage pollution create different signatures in organisms like coral.

"We determined that poor stormwater management and wastewater treatment were really to blame over the last decade for nitrogen pollution in the Caribbean," said Kim. "Our next step is to document this process in action."

To do this, Kim will focus on coral samples from the coastal areas of Guam, a small Pacific island that during the next four years will experience a population increase of 20 percent as the U.S. military relocates Marines from Okinawa, Japan to Guam.

Guam already has poor waste water infrastructure, and the influx of military personnel will further strain the island's resources. For Kim, the transition presents a unique opportunity to observe and document, in real time, the impact of increased sewage-derived nitrogen on the health of the coral reefs. He has already collected some baseline data in Guam, thanks to a small grant from the National Oceanic and Atmospheric Administration.

The Marines' translocation has recently slowed a bit, partially because of the earthquake and tsunami in Japan.

"This means that we will have time to collect more comprehensive baseline data," said Kim, who will return to Guam this summer to perform another set of sample and data collections with his colleague at the University of Guam.

American University is a leader in global education, enrolling a diverse student body from throughout the United States and nearly 140 countries. Located in Washington, D.C., the university provides opportunities for academic excellence, public service, and internships in the nation's capital and around the world.

Maggie Barrett | EurekAlert!
Further information:
http://www.american.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>