Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Set world standards for electronics recycling, reuse to curb e-waste exports to developing countries

16.09.2009
Sold in 2006: 230 million computers, 1 billion cell phones, 45.5 million TVs; many destined for uncontrolled disposal without change in policies, consumer practices

Processes and policies governing the reuse and recycling of electronic products need to be standardized worldwide to stem and reverse the growing problem of illegal and harmful e-waste processing practices in developing countries, according to experts behind the world's first international e-waste academy.

Making appropriate recycling technologies available worldwide and standardizing government policy approaches to reuse and recycling could dramatically extend the life of many computers, mobile phones, TVs and similar products and allow for more complete end-of-life harvesting of the highly valuable metals and other components they contain.

"Rapid product innovations and replacements – the shift from analog to newer digital technologies and to flat-screen TVs and monitors, for example – is pushing every country to find more effective ways to cope with their e-waste," says Ruediger Kuehr of United Nations University, Executive Secretary of a global public-private initiative called Solving the E-Waste Problem (StEP). Based in Bonn, Germany, StEP works with policy makers, industry, academia and other stakeholders.

"Millions of old devices in North America and Europe could easily double their typical three or four year 'first life' by being put to use in classrooms and small business offices across Africa, South America and Asia," says Ramzy Kahhat, Center for Earth Systems Engineering and Management at Arizona State University.

"An old Pentium II computer with an open-source operating system like Linux can run faster than some of the latest new models on store shelves."

"It's vitally important, however, to get unwanted devices into re-use before they get too old and damaged to be re-conditioned," says Dr. Kahhat, who advocates a return deposit to discourage consumers from simply storing old equipment in a drawer, garage or basement.

Dr. Kahmat and other international participants in the first E-Waste Summer School Sept. 6-11, organized by NVMP (the Dutch Foundation for the Disposal of Metal and Electrical Products) and StEP, shared and compared ideas on e-waste management.

Hosted at the Philips High Tech Campus in Eindhoven, Netherlands, participants from 15 countries explored topics ranging from policy, technology and economics to the social challenges of reducing e-waste - the first ever academy to look at the e-waste issue in its entirety, rather than through the lens of a specific academic discipline.

NVMP (the Dutch Foundation for the Disposal of Metal and Electrical Products) and Philips were principal partners in the effort, headed by United Nations University and EMPA, the Swiss Federal Institute for Material Science and Technology, and Germany's oldest technical university, Technische Universität Braunschweig.

Conclusions were presented Tuesday Sept. 15 at the R'09 Twin World Congress (www.r2009.org) in Davos, Switzerland.

Gold in the E-waste mountains

An exhaustive study Dr. Kahhat conducted in 2008 in Peru found that more than 85 % of used computers imported by that country were put back into service. That record contrasts sharply with the alarming statistic from Nigeria, Pakistan and Ghana that roughly 80 % of imported devices classified for reuse are simply scrapped.

Computers and other electronics that can no longer be used contain valuable materials when devices are properly dismantled and recycled.

A ton of used mobile phones, for example – or approximately 6,000 handsets (a tiny fraction of today's 1 billion annual production) -- contains about 3.5 kilograms of silver, 340 grams of gold, 140 grams of palladium, and 130 kg of copper, according to StEP. The average mobile phone battery contains another 3.5 grams of copper. Combined value: over US $15,000 at today's prices.

Recovering these metals with state-of-the art recycling processes generates a small fraction of the CO2 emissions, land degradation and hazardous emissions caused by mining them.

Recovering 10 kilograms of aluminum via recycling, for example, uses no more than 10% of the energy required for primary production, preventing the creation of 13 kilograms of bauxite residue, 20 kilograms of CO2, and 0.11 kilograms of sulphur dioxide emissions, and causes many other emissions and impacts.

Other components in e-waste like indium and coltan are increasingly hard to find but vital to electronics manufacturing.

China: 2 million backyard e-waste recyclers

UNU researcher Feng Wang estimates that of the 20 million people (roughly equal to the population of Australia) engaged in China’s waste management, 2 million are involved in the informal collection, re-use and recycling of e-waste.

All too often, e-scrap in developing countries is incinerated to recover metals, not only wasting much-needed resources but adding dangerous heavy metals, toxic dioxins, furans and polycyclic aromatic hydrocarbons (PAHs) to the environment, both local and global.

Though China has banned e-waste imports, it is still one of the world's major dumping grounds for e-waste from other countries, says Mr. Wang. In addition, China produces prodigious volumes of e-waste domestically (an estimated 2.3 million tonnes next year; second only to the United States with an estimated 3 million tonnes).

Rising environmental damage and health problems among those involved has prompted China, like many other countries, to initiate an ambitious new formal and regulated processes for managing e-waste with efficient, large scale facilities.

Mr. Wang is contributing to research into innovative and profitable models to help China ensure proper e-waste recycling, from the collection of equipment from households to the expansion of recycling facilities.

Quotable quotes

UN Under Secretary General Konrad Osterwalder, Rector of UNU: "By providing young researchers a platform to showcase their research, share their knowledge and interact with experts from all over the world we hope to advance innovative approaches to solving the e-waste problem."

NVMP Chairman André Habets: 'The manufacturers and importers that have teamed together in the NVMP find it important that all appliances that are put on the market are collected and recycled responsibly. The problem of e-waste transcends national borders. That is why we stimulate the development of insight into waste streams at the international level and promote international collaboration to jointly deal with this issue. This Summer School has brought together a group of motivated and intelligent people, who have shared knowledge and insights with one another and established new contacts. That is why the NVMP will once again be making this Summer School possible in 2010.'

Kazuhiko Takeuchi, Vice Rector of UNU: "In learning to manage e-waste, we need to reflect many inter-connected socio-economic and environmental factors, such as the impact of today's economic crisis and digital divide issues, and to promote closed-loop, resource-circular societies. These capacity development activities led by UNU will help developing countries find their own way to globally sound e-waste management".

EMPA (www.empa.ch)
EMPA is the research institute for material science and technology of the Swiss Federal Institute of Technology (ETH). It is a pioneer in management systems to monitor and control e-waste and setting recycling and disposal standards. Empa is also leading several e-waste related projects in Asia, Africa and Latin America. It also manages the guide online at www.ewasteguide.info, a comprehensive resource base including a bibliography of literature, case studies, audio and video files and other e-waste information.
NVMP (www.nvmp.nl)
The NVMP (Dutch E-Waste Compliance Scheme) organises the collection and recycling of electrical and electronic appliances and compact fluorescent lamps by order of the manufacturers and importers. This allows them to give practical shape to their social responsibility and legal obligations. The NVMP relies on a nationwide system for efficient and environmentally friendly collection and recycling.
Philips (www.philips.com)
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people's lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of "sense and simplicity". Headquartered in the Netherlands, Philips employs approximately 116,000 employees in more than 60 countries worldwide. With sales of EUR 26 billion in 2008, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.
StEP (www.step-initiative.org)
Solving the E-Waste Problem is a partnership of several UN organizations, prominent industry, government and international organizations, NGOs and the science sector. StEP initiates and facilitates sustainable e-waste handling through analysis, planning and pilot projects.
Technische Universität Braunschweig (www.iwf.ing.tu-bs.de).
The Technische Universität Braunschweig, is the oldest of nine German Institutes of Technology. For over a decade, e-waste has been a research focus of TU Braunschweig's Department of Product- and Life-Cycle-Management at the Institute of Machine Tools and Production Technology, taking a product- and process-related view of the entire life-cycle. TU Braunschweig is an active StEP member, coordinating the Reuse Task Force.
United Nations University (www.unu.edu)
UNU is an autonomous organ of the UN General Assembly dedicated to generating and transferring knowledge and strengthening capacities relevant to global issues of human security, development, and welfare. The University operates through a worldwide network of research and training centres and programmes, coordinated by UNU Centre in Tokyo.

Terry Collins | EurekAlert!
Further information:
http://www.unu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>