How the sensory organs of bacteria function

If these tiny, microscopic organisms are to survive in these environments, they need to be able to rapidly detect changes in their surroundings and react to them. Scientists at the Johannes Gutenberg University of Mainz are currently investigating how bacteria manage to pass information on their environment across their membranes into their cell nuclei.

“The sixty-four-thousand- dollar question is how signals are transmitted across the cell membrane,” explains Professor Gottfried Unden of the Institute of Microbiology and Vinology. Working in collaboration with the Max Planck Institute for Biophysical Chemistry in Göttingen, his research group has demonstrated that structural alterations to membrane-based sensors play a major role in the transfer of signals.

Some bacteria possess more than 100 different sensors that they use to form a picture of their environment. These sensors can show, for example, whether nutrient substrates and/or oxygen are present in the immediate neighborhood of the cell and what the external status of temperature and light is like. These sensors are mainly located in the cell membrane, i.e., the layer separating bacteria cells from the environment. From there they then transmit signals into the cell nucleus. Thanks to the development of new methods of isolating these sensors and of other innovative techniques, it is now possible to discover how all this works. The researchers in Mainz have also managed to modify a sensor that detects an important bacterial substrate so that it can be analyzed making use of new spectroscopic techniques.

“This is the first time that solid-body nuclear magnetic resonance (NMR) spectroscopy has been used to investigate large membrane proteins,” stated Professor Unden. In addition to this functional analysis, the structural analysis undertaken by the biophysicist team in Göttingen headed by Professor Marc Baldus has identified important details of the signal transmission process: a stimulus molecule – carbonic acid in this case – binds to a part of the sensor that protrudes from the cell. This appears to result in dissolution of the ordered structure of that segment of the sensor within the cell that is in non-stimulated status. It seems that it is this plasticity that elicits the subsequent activation of the enzymatic reaction cascade within the cell. This results in the cellular response, which, for example, can take the form of neosynthesis of enzymes or the development of protective mechanisms.

In addition to the new findings on signal transmission published in Nature Structural and Molecular Biology, the microbiologists of Mainz University have discovered a previously unknown and exceptional method of signal detection employed by the same sensor (designated DcuS), which they discuss in an article in the Journal of Biological Chemistry. This shows that bacteria react not only to their extracellular environment, but also to the intracellular situation. It is becoming apparent that it is not the sensors alone that detect stimuli. A second stimulus detection pathway is represented by the transport system that channels substrates into the cell. Once the substrate – carbonic acid – has been taken up, the transporter notifies the sensor of this. Prof. Unden added, “We have been able to identify that segment of the transporter that is responsible for the control of sensor functioning. The transporter is of fundamental importance for the function of the sensor. Without the transporter, the sensor does not work correctly and is constantly in activated status,” explained Professor Unden, who suspects that this function-related feedback on metabolic and transport activity is often more important for a cell than information concerning concentrations only.

Media Contact

Prof Dr Gottfried Unden alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors