Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the sensory organs of bacteria function

15.01.2009
Bacteria can occur almost anywhere on earth and exist under the most varying conditions.

If these tiny, microscopic organisms are to survive in these environments, they need to be able to rapidly detect changes in their surroundings and react to them. Scientists at the Johannes Gutenberg University of Mainz are currently investigating how bacteria manage to pass information on their environment across their membranes into their cell nuclei.

"The sixty-four-thousand- dollar question is how signals are transmitted across the cell membrane," explains Professor Gottfried Unden of the Institute of Microbiology and Vinology. Working in collaboration with the Max Planck Institute for Biophysical Chemistry in Göttingen, his research group has demonstrated that structural alterations to membrane-based sensors play a major role in the transfer of signals.

Some bacteria possess more than 100 different sensors that they use to form a picture of their environment. These sensors can show, for example, whether nutrient substrates and/or oxygen are present in the immediate neighborhood of the cell and what the external status of temperature and light is like. These sensors are mainly located in the cell membrane, i.e., the layer separating bacteria cells from the environment. From there they then transmit signals into the cell nucleus. Thanks to the development of new methods of isolating these sensors and of other innovative techniques, it is now possible to discover how all this works. The researchers in Mainz have also managed to modify a sensor that detects an important bacterial substrate so that it can be analyzed making use of new spectroscopic techniques.

"This is the first time that solid-body nuclear magnetic resonance (NMR) spectroscopy has been used to investigate large membrane proteins," stated Professor Unden. In addition to this functional analysis, the structural analysis undertaken by the biophysicist team in Göttingen headed by Professor Marc Baldus has identified important details of the signal transmission process: a stimulus molecule – carbonic acid in this case – binds to a part of the sensor that protrudes from the cell. This appears to result in dissolution of the ordered structure of that segment of the sensor within the cell that is in non-stimulated status. It seems that it is this plasticity that elicits the subsequent activation of the enzymatic reaction cascade within the cell. This results in the cellular response, which, for example, can take the form of neosynthesis of enzymes or the development of protective mechanisms.

In addition to the new findings on signal transmission published in Nature Structural and Molecular Biology, the microbiologists of Mainz University have discovered a previously unknown and exceptional method of signal detection employed by the same sensor (designated DcuS), which they discuss in an article in the Journal of Biological Chemistry. This shows that bacteria react not only to their extracellular environment, but also to the intracellular situation. It is becoming apparent that it is not the sensors alone that detect stimuli. A second stimulus detection pathway is represented by the transport system that channels substrates into the cell. Once the substrate – carbonic acid – has been taken up, the transporter notifies the sensor of this. Prof. Unden added, "We have been able to identify that segment of the transporter that is responsible for the control of sensor functioning. The transporter is of fundamental importance for the function of the sensor. Without the transporter, the sensor does not work correctly and is constantly in activated status," explained Professor Unden, who suspects that this function-related feedback on metabolic and transport activity is often more important for a cell than information concerning concentrations only.

Prof Dr Gottfried Unden | alfa
Further information:
http://www.uni-mainz.de/eng/12981.php

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>