Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment sleuthing

23.03.2012
A University of Delaware oceanographer has stumbled upon an unusual aid for studying local waterways: radioactive iodine.

Trace amounts of the contaminant, which is used in medical treatments, are entering waterways via wastewater treatment systems and providing a new way to track where and how substances travel through rivers to the ocean.

"This is a really interesting convergence of medicine, public health and environmental science," said Christopher Sommerfield, associate professor of oceanography in UD's College of Earth, Ocean, and Environment.

Sommerfield found small quantities of radioactive iodine, also called radioiodine or I-131, by accident while sampling the Delaware River, the main source of freshwater to Delaware Bay. The amounts were at low concentrations that do not pose a threat to humans or the environment, according to the Environmental Protection Agency (EPA).

Sommerfield measures naturally occurring radionuclides, variants of elements emitting radiation, that attach to mud particles carried along by water. The work is part of his research on how river sediments move through estuaries to the coastal ocean and influence the sea floor and coast.

When I-131 showed up in his samples, he thought it was a mistake.

"I-131 is a man-made radionuclide produced in nuclear reactors, so when we first detected it my heart skipped a beat," Sommerfield said. "However, after further research and consultation with government experts, I realized that it was I-131 waste from thyroid cancer treatments."

Therapeutic I-131 administered at hospitals enters urban sewage after thyroid cancer patients return home and excrete the medicine. Last summer the Philadelphia Water Department discovered extremely low levels of I-131 in the Schuylkill River, which serves as a drinking water source for the city, in samples collected following the Fukushima nuclear disaster in Japan.

The department determined that the substance was coming from local medical treatments. Like the amounts Sommerfield found throughout the Delaware Estuary around the same time, the levels were well below the maximum accepted level set by the EPA, which periodically monitors I-131 at a limited number of sites.

Sommerfield shared his findings with Philadelphia and Delaware officials, who continue to examine the situation. He discovered that the highest I-131 concentrations were present in the highly urbanized section of the Delaware River, which receives a large amount of treated wastewater from municipalities, and that levels steadily decreased downstream to zero in Delaware Bay.

I-131 has a half-life of eight days, meaning its radioactivity decreases by half during that time period as it transforms to non-radioactive elements. Sommerfield was unable to find much information about the fate of I-131 in coastal waterways.

"There are only a few recent research papers documenting the behavior I-131 in rivers and estuaries worldwide, and nothing for Delaware," he said.

Sommerfield recently shared his experience at the international Ocean Sciences Meeting in Utah, where fellow researchers were interested in learning more about how I-131 could be used as a water and sediment tracer. Radionuclides help oceanographers study transport processes in estuaries and coastal waters, and I-131 has the potential to fill a void among natural and man-made radionuclides that are typically measured because it has a very short half-life and comes from a specific source.

"Wastewater-derived I-131 provides a tool to better understand how estuaries disperse water and suspended particles," Sommerfield said. "With further research, we expect to learn more about how sediment from the Delaware River is delivered to the estuary and fringing tidal marshlands, which require muddy sediments for nutrients and stability."

This research is funded by the National Science Foundation and Delaware Sea Grant.

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>