Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seamounts may serve as refuges for deep-sea animals that struggle to survive elsewhere

13.02.2009
Over the last two decades, marine biologists have discovered lush forests of deep-sea corals and sponges growing on seamounts (underwater mountains) offshore of the California coast.

It has generally been assumed that many of these animals live only on seamounts, and are found nowhere else. However, two new research papers show that most seamount animals can also be found in other deep-sea areas.

Seamounts, however, do support particularly large, dense clusters of these animals. These findings may help coastal managers protect seamounts from damage by human activities.

Tens of thousands of seamounts dot the world's ocean basins. Although some shallower seamounts have been used as fishing grounds, few seamounts have been studied in detail. Davidson Seamount, about 120 kilometers (75 miles) offshore of the Big Sur coast, is an exception. Since 2000, researchers have spent over 200 hours exploring its slopes and peaks using the remotely operated vehicle (ROV) Tiburon.

Two of the expeditions to Davidson Seamount were led by Andrew DeVogelaere of the Monterey Bay National Marine Sanctuary and were funded by the National Oceanic and Atmospheric Administration's Office of Exploration. Other expeditions were funded by the David and Lucile Packard Foundation (through MBARI) and were led by MBARI biologist James Barry, who studies seafloor animals, and by geologist David Clague, who studies undersea volcanoes.

Following each expedition to Davidson Seamount, marine biologists at MBARI studied high-resolution video taken by the ROV and identified every animal they could see. Over 60,000 of these observations were entered in MBARI's video annotation and reference system (VARS). Craig McClain and Lonny Lundsten, the lead authors of the two recent papers, used the VARS database to find out which animals were unique to Davidson Seamount and which had been seen elsewhere.

Altogether, 168 different species of animals were observed on Davidson Seamount. McClain's search of the VARS database showed that 88% of these animals had also been seen or reported in other deep seafloor areas, such as the walls of Monterey Canyon. Three quarters of the species on Davidson were not even unique to the California coast, and had been seen in seafloor areas over 1000 kilometers (620 miles) away, including the Hawaiian Islands, the Sea of Japan, and Antarctica.

Only about seven percent of the species at Davidson Seamount had never been seen anywhere else. Of these 12 apparently "endemic" species, most were new to science. Thus, their full ranges are still unknown.

Although few animals are "endemic" to Davidson Seamount, the research demonstrated that this seamount does support distinctive groups of animals, which are dominated by extensive "forests" of large, "old-growth" corals and sponges. These same species of corals and sponges also grow on the walls of Monterey Canyon, but usually as smaller, scattered individuals. Conversely, sea cucumbers are common on the walls of Monterey Canyon, but are rare at Davidson Seamount. Thus, animals that are common on Davidson Seamount are uncommon in other seafloor areas, and vice versa.

The researchers speculate that Davidson Seamount is a good habitat for deep-sea corals and sponges because it has favorable bottom materials (bare lava rock), a steady food supply (drifting particles of the right size and type), and may be less disturbed by strong bottom currents than other seafloor areas. Craig McClain, one of the lead authors, explains, "The large groves of corals and sponges are unique to seamounts. The crests of seamounts are particularly good because they provide flat rocky surfaces that don't accumulate much sediment. This is partly due to the fact that seamounts are so far offshore."

In contrast, McClain points out, "When you look at the seafloor in Monterey Canyon, it's mucky. That makes it tough for filter feeders, especially sponges. Any flat surface in the canyon collects mud. This makes it tough for corals to settle anywhere except on near-vertical surfaces. Just staying attached to these surfaces can be a challenge in itself."

McClain and Lundsten's research also suggests that seamounts such as Davidson Seamount may be ecologically important as breeding grounds for animals that are rare in other habitats. As McClain writes in his paper, "seamounts are likely to be sources of larvae that maintain populations of certain species in sub-optimal, non-seamount sinks." He explains, "Sources are places where certain species do really well—they're self sustaining populations. Sinks are areas where these species can live, but do very poorly. Populations in sink areas will die out if they're not continuously replenished by new animals from source areas." The researchers suggest that future DNA studies of seamount animals would help scientists find out if seamounts are indeed sources of larvae for other seafloor areas.

Lundsten's paper emphasizes the fact that not all seamounts are alike. For example, Rodriguez Seamount, a smaller seamount offshore of Point Conception, once extended above sea level. Thus, Rodriguez Seamount has a flat, sediment-covered crest that is partially covered with ancient beach sands. These sands have been colonized by a very different set of animals from those at Davidson Seamount. In fact, sea cucumbers are the most abundant animals on Rodriguez Seamount.

In 2008, Davidson Seamount was added to the Monterey Bay National Marine Sanctuary. Findings from McClain's and Lundsten's papers will provide critical information for managing Davidson Seamount, and could be useful in other sea-life protection efforts around the world. Prior to this study, seamounts were considered isolated biological "islands," which might require management to protect certain unique species. This study, on the other hand, suggests that seamounts should be managed as entire communities, whose dense populations of animals release larvae that help colonize other, less optimum environments. Either way, the authors point out, seamounts are well worthy of our protection.

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2009/seamounts/seamounts.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>