Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seafood, wild or farmed? The answer may be both

07.08.2012
Most people think of seafood as either wild or farmed, but in fact both categories may apply to the fish you pick up from your grocery store. In recent years, for example, as much as 40 percent of the Alaskan salmon catch originated in fish hatcheries, although it may be labeled "all wild, never farmed."

An article produced by a working group of UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) recommends that when a combination of seafood production techniques are used, this be acknowledged in the marketplace. The group calls on national and international organizations and governmental agencies to use the term "hybrid," when applicable. The article is in press with Marine Policy, and is currently available online.

"Farming fish and shellfish is generally a different way to produce seafood than fishing," said Dane Klinger, first author and a Ph.D. student at Stanford University. "While fisheries traditionally interact with their target population only at the time of capture, aquaculture, in its 'purest' state, controls the entire lifecycle of the organism, from egg to harvest. However, many common types of seafood are produced using techniques from both fisheries and aquaculture."

Mary Turnipseed, second author and a former postdoctoral fellow at NCEAS, commented: "Seafood production is a critical part of global food security, but the way we study and talk about it often obscures how to achieve the thing we care the most about: increasing the supply of sustainably produced seafood to feed a rapidly growing human population. We need to start collecting more accurate data on how seafood is really produced in today's world, and a first step will be through replacing the old farmed-fished dichotomy with a farmed-fished-hybrid classification scheme."

The article reveals how the strictly traditional categories of seafood production –– fisheries and aquaculture –– are insufficient to account for the growth potential and environmental impacts of the seafood sector. The authors examine several popular seafood products that are harvested using a combination of techniques generally ascribed to either fisheries or aquaculture.

The authors reviewed several cases of fisheries that are augmented by aquaculture. In addition to the example of hatcheries stocking Pacific salmon in Alaskan fisheries, hatcheries also stock scallops in New Zealand waters, and eastern oysters in the Chesapeake Bay, according to the authors. And American lobsters are fed by bait placed in traps until they reach legal catch size. In fact, the amount of bait provided to lobsters in one season is often greater than the volume of lobster catch in the same season, by a factor of two.

In aquaculture, the lines are often blurred –– fishing may be involved in production. For example, Bluefin tuna farms obtain their stock by fishing. These farms also fish for feed, and use 10 to 20 kilograms of fish for every kilogram of tuna they produce.

The primary source of information about the world's fisheries and aquaculture enterprises is the United Nation's Food and Agriculture Organization (FAO). However, the authors explain that the reporting of data from many developing and developed countries to the FAO is incomplete. They note that for the 52 percent of countries that do submit adequate data, "adding a hybrid production category would help elucidate their national understanding of domestic seafood production, as well as enhance global understanding of an important food sector."

The authors conclude by stating the urgency of adding the hybrid category: "Without these data, transformations in the market for a critical food and livelihood source for billions of people could occur, with global analysts and policymakers being the last to know."

The team responsible for the article, the NCEAS Working Group on Envisioning a Sustainable Global Seafood Market and Restored Marine Ecosystems, includes ecologists, economists, policy analysts, members of the seafood industry, and marine conservation organizations.

In addition to Klinger and Turnipseed, the authors are Benjamin S. Halpern, NCEAS; Kimberly A. Selkoe, NCEAS and the Hawaii Institute of Marine Biology; James L Anderson, University of Rhode Island; Frank Asche, the University of Stavanger, Stavanger, Norway; Larry Crowder, the Center for Ocean Solutions, Monterey, Calif.; Atle G. Guttormsen, Norwegian University of Life Sciences, Aas, Norway; Mary I. O'Connor, University of British Columbia; Raphael Sagarin, University of Arizona; Geoff Shester, Oceana, Monterey, Calif.; Martin D. Smith, Duke University; and Peter Tyedmers, Dalhousie University, Halifax, Nova Scotia.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: FAO Marine science NCEAS Turnipseed environmental impact food production seafood

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>