Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabed biodiversity of the Straits of Magellan and Drake Passage

28.01.2010
A study of animals visible to the naked eye and living in and on the seabed – the 'macrobenthos' – of the Straits of Magellan and Drake Passage will help scientists understand the biodiversity, biogeography and ecology of the Magellanic region.

"The biodiversity data are from my very first oceanographic cruise with the Chilean Navy in the Magellanic region in 1997, as an early undergraduate," said Dr Sven Thatje of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton: "The beauty of this dataset is the comprehensive diversity analysis with probably more than 10 per cent of species new to science." The cruise was part of the Chilean 'Cimar Fiordo III' expedition.

The soft sediments at the seafloor were sampled at depths ranging between 35 and 571 metres using a 'box corer' lowered from the Chilean navy vessel RV Vidal Gormaz. Samples were taken within the Straits of Magellan, the seaway separating mainland South America and the islands of the Tierra Del Fuego archipelago, and the eastern part of the Beagle Channel which separates South America from Antarctica. Samples were also taken from adjacent channels and fjords, some of which had been visited for the first time ever during the cruise.

A total of 173 species or morphological variants of species were identified, including crustaceans, molluscs and echinoderms. But polychaete worms, the group that includes ragworms dug by anglers for bait on sandy beeches at low tide, dominated both in terms of abundance and biomass.

At some locations the abundance of invertebrates peaked at more than 10,000 individuals per square metre, even without counting rare species that were missed or fast moving species that eluded capture. However, abundance, biomass and species richness all decreased with depth, consistent with reports from other regions such as the high Antarctic Weddell and Lazarev Seas.

The animals living at the seafloor depend for food on organic matter that rains down from the overlying ocean. "Variation in this flux of organic matter from the pelagic to the benthic is probably the major factor structuring these communities," said Dr Thatje.

It has been argued for the polychaetes of the Pacific coast of South America that shallow areas act as sources of colonisation, helping to maintain species diversity in deeper regions in the face of local extinction. "Such colonisation-extinction dynamics may also explain the patterns of diversity that we see in the Magellanic region," said Dr Thatje.

The Magellanic region was covered by ice 21,000 years ago, and the sea level was much lower than it is today. The Straits of Magellan probably did not fully open until approximately 7,000 years ago, after the ice had receded. The species now present in Magellanic waters must therefore have recolonised the region from adjacent Atlantic and Pacific areas, and indeed some of the polychaetes found in the Magellanic region are known from the Antarctic shelf.

The larvae of polychaetes can live as plankton for many months before resettling and developing into adults. "The dispersal of Antarctic species through larval transport in easterly circumpolar currents may explain their occurrence in the Magellanic region," said Dr Thatje.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact

Dr Sven Thatje: email sven.thatje@noc.soton.ac.uk

The researchers are Dr Sven Thatje of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton, and his graduate student Alastair Brown.

Publication:

Thatje, S. & Brown, A. The macrobenthic ecology of the Straits of Magellan and Beagle ecology of the Straits of Magellan and Beagle Channel. Anales Instituto Patagonia (Chile) 37(2), 17-27 (2009).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>