Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabed biodiversity of the Straits of Magellan and Drake Passage

28.01.2010
A study of animals visible to the naked eye and living in and on the seabed – the 'macrobenthos' – of the Straits of Magellan and Drake Passage will help scientists understand the biodiversity, biogeography and ecology of the Magellanic region.

"The biodiversity data are from my very first oceanographic cruise with the Chilean Navy in the Magellanic region in 1997, as an early undergraduate," said Dr Sven Thatje of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton: "The beauty of this dataset is the comprehensive diversity analysis with probably more than 10 per cent of species new to science." The cruise was part of the Chilean 'Cimar Fiordo III' expedition.

The soft sediments at the seafloor were sampled at depths ranging between 35 and 571 metres using a 'box corer' lowered from the Chilean navy vessel RV Vidal Gormaz. Samples were taken within the Straits of Magellan, the seaway separating mainland South America and the islands of the Tierra Del Fuego archipelago, and the eastern part of the Beagle Channel which separates South America from Antarctica. Samples were also taken from adjacent channels and fjords, some of which had been visited for the first time ever during the cruise.

A total of 173 species or morphological variants of species were identified, including crustaceans, molluscs and echinoderms. But polychaete worms, the group that includes ragworms dug by anglers for bait on sandy beeches at low tide, dominated both in terms of abundance and biomass.

At some locations the abundance of invertebrates peaked at more than 10,000 individuals per square metre, even without counting rare species that were missed or fast moving species that eluded capture. However, abundance, biomass and species richness all decreased with depth, consistent with reports from other regions such as the high Antarctic Weddell and Lazarev Seas.

The animals living at the seafloor depend for food on organic matter that rains down from the overlying ocean. "Variation in this flux of organic matter from the pelagic to the benthic is probably the major factor structuring these communities," said Dr Thatje.

It has been argued for the polychaetes of the Pacific coast of South America that shallow areas act as sources of colonisation, helping to maintain species diversity in deeper regions in the face of local extinction. "Such colonisation-extinction dynamics may also explain the patterns of diversity that we see in the Magellanic region," said Dr Thatje.

The Magellanic region was covered by ice 21,000 years ago, and the sea level was much lower than it is today. The Straits of Magellan probably did not fully open until approximately 7,000 years ago, after the ice had receded. The species now present in Magellanic waters must therefore have recolonised the region from adjacent Atlantic and Pacific areas, and indeed some of the polychaetes found in the Magellanic region are known from the Antarctic shelf.

The larvae of polychaetes can live as plankton for many months before resettling and developing into adults. "The dispersal of Antarctic species through larval transport in easterly circumpolar currents may explain their occurrence in the Magellanic region," said Dr Thatje.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact

Dr Sven Thatje: email sven.thatje@noc.soton.ac.uk

The researchers are Dr Sven Thatje of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton, and his graduate student Alastair Brown.

Publication:

Thatje, S. & Brown, A. The macrobenthic ecology of the Straits of Magellan and Beagle ecology of the Straits of Magellan and Beagle Channel. Anales Instituto Patagonia (Chile) 37(2), 17-27 (2009).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>