Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sea as a rubbish tip

17.04.2012
Biologists prepare guidelines for a more precise investigation into marine pollution from microplastic particles.

Large quantities of globally produced plastics end up in the oceans where they represent a growing risk. Above all very small objects, so-called microplastic particles, are endangering the lives of the many sea creatures. An estimate of how greatly the oceans are polluted with microplastic particles has so far failed in the absence of globally comparable methods of investigation and data.



Together with British and Chilean colleagues, scientists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have now analysed all published studies on this topic and have proposed standardised guidelines for the recording and characterisation of microplastic particles in the sea.

Plastic bottles washed on to the beach are as much a part of the coast as the sound of seagulls. What the eye does not see are the innumerable ultra-small plastic objects which float in the water, are washed on to the beach or settle on the sea bed. Scientists refer to these plastic particles as “microplastic particles“, understanding these to mean plastic objects whose diameter is less than five millimetres – whereby the majority of microplastic particles are smaller than a grain of sand or the tip of a needle. It is this property that also makes them so dangerous to the sea dwellers. “Microplastic particles are swallowed by organisms and absorbed via the digestive tract. It has been possible, for example, to detect them in the tissue of mussels or other animals“, says Dr. Lars Gutow, biologist at the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association. Toxic substances also attach to the small particles in the sea which then enter the food chain in this way and may therefore ultimately be dangerous to humans.
Lars Gutow and colleagues from the Universidad Católica del Norte in Chile and the School of Marine Science and Engineering in Plymouth have now jointly addressed the question as to how greatly the oceans of the world are polluted with microplastic particles. The biologists analysed 68 scientific publications on this subject and determined that the results are difficult to compare. “Very different methods were used in these studies which is why it could not be understood whether the observed regional differences in the distribution of the plastic particles are real or whether they are attributable to the methods of recording“, explains Prof. Martin Thiel, initiator of the now published comparative study and scientist at the Universidad Católica del Norte. It emerged that 100,000 times more microplastic particles could be fished out of the water column if a net with a mesh of 85 micrometres was used instead of one with 450 micrometres.

Based on these findings the international team of researchers has now for the first time prepared guidelines for the recording and characterisation of microplastic particles and has published these in the Environmental Science & Technology journal in which the scientists also explain the possible origins of the plastic waste. “Microplastic particles reach the seas in different ways. A large share is accounted for by so-called plastic pellets used as a raw material in the manufacture of plastic products such as computer housings and other everyday articles. If these pellets are handled carelessly, during ship loading for example, many may be blown away by the wind and fall into the sea", explains Lars Gutow.

Microplastic particles are also to be found in cosmetics and cleaning agents, however. “Very small plastic particles are used as “abrasives” in many a peeling product. They then reach the sea via sewage water and rivers“, says the biologist. And finally every plastic bottle, every plastic bag floating on the sea, one day disintegrates into countless microparticles. “It can take years for larger plastic parts to disintegrate primarily through physical processes. The UV radiation of the sun makes the plastic brittle. It is then broken down into ever smaller parts from the waves and friction processes“, says Lars Gutow.

The smallest particles so far detected had a diameter of one micrometre which is one thousandth of a millimetre. Complex investigations are required to be able to determine such tiny plastic objects exactly and clarify their origins. “We recommend to every scientist to analyse very small microplastic particles using an infrared spectroscope. This procedure uncovers the constituents and permits an exact identification as a plastic“, says Lars Gutow.

The scientists also point out gaps in their knowledge in their research guidelines. “The topic of plastics in the sea has become considerably more important in recent years. There is a lot of research going on. Nevertheless we do not know, for example, whether and in which quantity microplastic particles are deposited on rocky shores and in salt marshes. The latter are above all known for having a high retention potential for particles. Whether this also applies to microplastic particles is not so far known“, says Martin Thiel who is examining the contamination of the Chilean coast with microplastic particles.

If in the future all marine researchers used standardised methods to record the microplastic particles based on the recommendations of this comparative study, then not only the reliability of their results ought to increase considerably. This then offers the chance of determining the final fate of microplastic particles accumulating in the world’s oceans and to uncover the consequences of this pollution for the ecological systems and therefore for humans.

The title of the original publication is:
Hidalgo-Ruz, Valeria / Gutow, Lars / Thompson, Richard C. / Thiel, Martin (2012): Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification, Environmental Science & Technology, 46, 3060-3075, dx.doi.org/10.1021/es2031505

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>