Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scrubbing CO2 from atmosphere could be a long-term commitment

02.07.2010
With carbon dioxide in the atmosphere approaching alarming levels, even halting emissions altogether may not be enough to avert catastrophic climate change. Could scrubbing carbon dioxide from the air be a viable solution?

A new study by scientists at the Carnegie Institution suggests that while removing excess carbon dioxide would cool the planet, complexities of the carbon cycle would limit the effectiveness of a one-time effort. To keep carbon dioxide at low levels would require a long-term commitment spanning decades or even centuries.

Previous studies have shown that reducing carbon dioxide emissions to zero would not lead to appreciable cooling, because carbon dioxide already within the atmosphere would continue to trap heat. For cooling to occur, greenhouse gas concentrations would need to be reduced. "We wanted to see what the response would be if carbon dioxide were actively removed from the atmosphere," says study coauthor Ken Caldeira of Carnegie's Department of Global Ecology. "Our study is the first to look at how much carbon dioxide you would need to remove and for how long to keep atmospheric carbon dioxide concentrations low. This has obvious implications for the public and for policy makers as we weigh the costs and benefits of different ways of mitigating climate change."

For the study, Caldeira and lead author Long Cao, also at Carnegie, did not focus on any specific method of capturing and storing carbon dioxide from the ambient air. The possibilities include approaches as diverse as industrial-scale chemical technologies and changing land use so more carbon dioxide is naturally absorbed by vegetation. For the study, the researchers used an Earth system model under projected conditions at the middle of this century when global surface temperatures have been raised 2° C (3.6° F). They then simulated the effects of an idealized case in which carbon emissions were reduced to zero and carbon dioxide in the atmosphere was instantaneously restored to pre-industrial levels.

The researchers found that removing all human-emitted carbon dioxide from the atmosphere caused temperatures to drop, but it offset less than half of CO2-induced warming. Why would removing all the extra carbon dioxide have such a small effect? The researchers point to two primary reasons. First, slightly more than half of the carbon dioxide emitted by fossil-fuels over the past two centuries has been absorbed in the oceans, rather than staying in the atmosphere. When carbon dioxide is removed from the atmosphere, it is partially replaced by gas coming out of ocean water. Second, the rapid drop in atmospheric carbon dioxide and the change in surface temperature alters the balance of the land carbon cycle, causing the emission of carbon dioxide from the soil to exceed its uptake by plants. As a result, carbon dioxide is released back into the atmosphere.

According to the simulations, for every 100 billion tons of carbon removed from the atmosphere, average global temperatures would drop 0.16° C (0.28° F).

Further simulations showed that in order to keep carbon dioxide at low levels, the process of extracting carbon dioxide from the air would have to continue for many decades, and perhaps centuries, after emissions were halted.

"If we do someday decide that we need to remove carbon dioxide from the atmosphere to avoid a climate crisis, we might find ourselves committed to carbon dioxide removal for a long, long time. A more prudent plan might involve preventing carbon dioxide emissions now rather than trying to clean up the atmosphere later."

The Carnegie Institution (carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://carnegiescience.edu
http://www.ciw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>