Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Scientists Help Decode Mysterious Green Glow of the Sea

03.04.2009
Dual purpose discovered for worm's brilliant bioluminescent light

Many longtime sailors have been mesmerized by the dazzling displays of green light often seen below the ocean surface in tropical seas. Now researchers at Scripps Institution of Oceanography at UC San Diego have uncovered key clues about the bioluminescent worms that produce the green glow and the biological mechanisms behind their light production.

Marine fireworms use bioluminescence to attract suitors in an undersea mating ritual. Research conducted by Scripps marine biologists Dimitri Deheyn and Michael Latz reveals that the worms also may use the light as a defensive measure. The report, published as the cover story of the current issue of the journal Invertebrate Biology, provides insights into the function of fireworm bioluminescence and moves scientists closer to identifying the molecular basis of the light.

"This is another step toward understanding the biology of the bioluminescence in fireworms, and it also brings us closer to isolating the protein that produces the light," said Deheyn, a scientist in the Marine Biology Research Division at Scripps. "If we understand how it is possible to keep light so stable for such a long time, it would provide opportunities to use that protein or reaction in biomedical, bioengineering and other fields-the same way other proteins have been used."

The fireworms used in the study (Odontosyllis phosphorea) are seafloor-dwelling animals that inhabit tropical and sub-tropical shallow coastal areas. During summer reproductive events known as "swarming," females secrete a luminous green mucus-which often draws the attention of human seafarers-before releasing gametes into the water. The bright glow attracts male fireworms, which also release gametes into the bright green cloud.

The precisely timed bioluminescent displays have been tracked like clockwork in Southern California, the Caribbean and Japan, peaking one to two days before each quarter moon phase, 30 to 40 minutes after sunset and lasting approximately 20 to 30 minutes.

Deheyn and Latz collected hundreds of specimens from San Diego's Mission Bay for their study, allowing them to not only examine live organisms but also produce the fireworms' luminous mucus for the first time in an experimental setting. The achievement provided a unique perspective and framework for examining the biology behind the worm's bioluminescent system.

A central finding described in the Invertebrate Biology paper is that the fireworms' bioluminescent light appears to play a role beyond attracting mates. The researchers found that juveniles produce bioluminescence as flashes, leading to a determination that the light also may serve as a defensive mechanism, intended to distract predators.

Through experiments that included hot and cold testing and oxygen depletion studies, Deheyn and Latz found that the bioluminescence is active in temperatures as low as minus 20 degrees Celsius (minus 4 degrees Fahrenheit). Higher temperatures, however, caused the bioluminescence to decay rapidly. The light also proved resilient in settings of low oxygen levels.

Based on these tests, the researchers believe the chemical process responsible for the bioluminescence may involve a specific light-producing protein-also called a "photoprotein." Further identification and isolation will be pursued in future studies.

"We were inspired by the work of earlier researchers who had studied the chemistry of fireworm bioluminescence, including Osamu Shimomura, one of the winners of the 2008 Nobel Prize in Chemistry for his discovery of green fluorescent protein from the jellyfish luminescent system," said Latz. "This new study showed that the fireworm bioluminescence also involves green fluorescence, originating from the oxidation product of the luminescent reaction."

The study was supported by a grant from the Air Force Office of Scientific Research's Biomimetics, Biomaterials and Biointerfacial Sciences program.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu
http://scrippsnews.ucsd.edu/Releases/?releaseID=970

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>