Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Graduate Students Discover Methane Seep Ecosystem

30.07.2012
During a recent oceanographic expedition off San Diego, graduate student researchers from Scripps Institution of Oceanography at UC San Diego discovered convincing evidence of a deep-sea site where methane is likely seeping out of the seafloor, the first such finding off San Diego County.

Such "methane seeps" are fascinating environments because of their extraordinary chemical features and often bizarre marine life. The area of interest, roughly 20 miles west of Del Mar, is centered on a fault zone known as the San Diego Trough Fault zone. Methane, a clear, highly combustible gas, exists in the earth's crust under the seafloor along many of the world's continental margins. Faults can provide a pathway for methane to "seep" upward toward the seafloor.

The Scripps graduate students made the discovery during the recent San Diego Coastal Expedition (bit.ly/sdcoastex), a multidisciplinary voyage conceived and executed by Scripps graduate students. The cruise was funded by the University of California Ship Funds Program, which supports student research at sea and provides seagoing leadership opportunities.

While conducting surveys in search of methane seeps aboard Scripps' research vessel Melville, the graduate students mapped a distinct mound on the seafloor at 1,036 meters depth (3,400 feet), spanning the size of a city block and rising to the height of a two-story building. The area had been recommended by Jamie Conrad, Holly Ryan (U.S. Geological Survey) and Charles Paull (Monterey Bay Aquarium Research Institute), who surveyed the faults in 2010.

"Below the mound," described Scripps geosciences graduate student Jillian Maloney, "we observed a disruption in subsurface sediment layers indicative of fluid seepage."

The Scripps researchers then deployed instruments to collect sediment cores, gathering further evidence such as seep-dwelling animals, sulfidic-smelling black mud and carbonate nodules. These samples are currently being analyzed in Scripps laboratories for chemical clues and other telling elements of the environment.

Organisms collected from the site include thread-like tubeworms called siboglinids and several clams. Siboglinids lack a mouth and digestive system and gain nutrition via a symbiotic relationship with bacteria living inside them, while many clams at seeps get some of their food from sulfide-loving bacteria living on their gills.

While food is scarce in much of the cold, dark ocean depths, it is abundant at seeps due to the bacteria that proliferate around the methane source. Microbes there are eaten by worms, snails, crabs and clams, leading to a rich and productive community that helps sustain the surrounding deep-sea ecosystem.

"These chemosynthetic ecosystems are considered 'hot spots' of life on the seafloor in an otherwise desert-like landscape," said San Diego Coastal Expedition team member Alexis Pasulka, a Scripps biological oceanography graduate student. "New forms of life are continuously being discovered in these environments. Therefore, it is important to study these ecosystems not only to further appreciate the diversity of life in our oceans, but also so that we can better understand how these ecosystems contribute to overall ocean productivity and the carbon cycle."

Methane is a potent greenhouse gas, and researchers don't yet fully understand the magnitude to which seeping methane in the ocean contributes additional carbon to the atmosphere. Moreover, on many continental margins, frozen methane hydrates could represent a future energy source. Along the West Coast, methane seeps are known to exist off Oregon, California (near Eureka, Monterey Bay, Point Conception and Santa Monica), in the Gulf of California and off Costa Rica.

"This is a significant and exciting discovery in part because of the possibilities for future research at Scripps," said biological oceanography graduate student Benjamin Grupe, a member of the seep contingent on the San Diego Coastal Expedition. "The existence of a methane seep just a few hours from San Diego should allow Scripps scientists to visit frequently, studying how this dynamic ecosystem changes over days, months and years. Such regular data collection is difficult at most cold seeps, which rarely occur so close to ports or research institutions."

Grupe will lead a follow-up cruise in December that will revisit the newly discovered seep to collect additional samples and learn more about this ecosystem. The team of graduate students hopes to raise funds to employ technologies such as video-driven coring instruments and towed video cameras that will give them an up-close look at the methane seep.

The search for local seeps was one focus area of the multidisciplinary San Diego Coastal Expedition, which included teams of students investigating the oceanography and marine ecosystems off San Diego and led by chief scientist Christina Frieder. In addition to Grupe, Pasulka and Maloney, other members of the seep team included geophysics graduate students Valerie Sahakian and Rachel Marcuson.

R/V Melville, the oldest ship in the U.S. academic fleet, is owned by the U.S. Navy and has been operated by Scripps Oceanography for all of its 41 years.

"The students should be congratulated on their hard work and perseverance leading to this exciting find," said Lisa Levin, a Scripps professor who has studied methane seep ecosystems in most of the world's oceans. "Other scientists have suspected that methane seeps were present in the San Diego region, but these new data and samples provide the first convincing evidence. We know very little about what lives in deep waters-the planet's largest ecosystem-so it is not unexpected to find surprises on the deep-sea floor right in our own backyard. Having a 'local' seep should be a great boon to deep-sea research, education and public outreach at Scripps."

UC San Diego News on the web at: http://ucsdnews.ucsd.edu

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>