Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Uncover a Dramatic Rise in Sea Level and Its Broad Ramifications

11.02.2009
Scientists have found proof in Bermuda that the planet’s sea level was once more than 21 meters (70 feet) higher about 400,000 years ago than it is now. Their findings were published in the journal Quaternary Science Reviews Wednesday, Feb. 4.

Storrs Olson, research zoologist at the Smithsonian’s National Museum of Natural History, and geologist Paul Hearty of the Bald Head Island Conservancy discovered sedimentary and fossil evidence in the walls of a limestone quarry in Bermuda that documents a rise in sea level during an interglacial period of the Middle Pleistocene in excess of 21 meters above its current level.

Hearty and colleagues had published preliminary evidence of such a sea-level rise nearly a decade ago, which was met with skepticism among geologists. This marine fossil evidence now provides unequivocal evidence of the timing and extent of this event.

The nature of the sediments and fossil accumulation found by Olson and Hearty was not compatible with the deposits left by a tsunami but rather with the gradual, yet relatively rapid, increase in the volume of the planet’s ocean caused by melting ice sheets.

A rise in sea level to such a height would have ramifications well beyond geology and climate modeling. For the organisms of coastal areas, and particularly for low islands and archipelagos, such a rise would have been catastrophic. The Florida peninsula, for example, would have been reduced to a relatively small archipelago along the higher parts of its central ridge.

“We have only to look at Bermuda to begin to assess the impact for terrestrial organisms or seabirds dependant on dry land for nesting sites,” said Olson. “This group of islands in the Atlantic was so compromised as a nesting site for seabirds that at least one species of shearwater became extinct as well as the short-tailed albatross, marking the end of all resident albatrosses in the North Atlantic.”

Determining the timing and extent of this global rise in sea level is not only important for interpreting the influence that it may have had on biogeographical patterns and extinctions of organisms on islands and low-lying continental coastal areas, it is also critical for anticipating the possible effects of future climate change. This particular interglacial period is considered by some scientists to be a suitable comparison to our current interglacial period. With future carbon dioxide levels possibly rising higher than any time in the past million years, it is important to consider the potential effects on polar ice sheets.

Biogeographers, conservationists and many others in the biological sciences must take these findings into consideration, Olson urged. “These findings are incredibly important and have major relevance because of their potential predictive value since this sea-level rise took place during the interglacial period most similar to the present one now in progress. It thus becomes essential that the full extent and duration of this event be more widely recognized and acknowledged.”

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>