Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to study impact of gulf oil spill on marine food webs

25.05.2010
Shells from oysters, clams, and periwinkles hold clues about the ways and rates at which harmful compounds from the spill are being incorporated into the Gulf’s marine food web

New reports are surfacing every day about the immediate impacts of the Deepwater Horizon oil spill on Gulf Coast wildlife, especially as the oil reaches the sensitive marshlands along the coast.

But how will these communities be affected over time? Scientists currently know very little about how long it takes for the hydrocarbons and heavy metals in crude oil to work their way through marine food webs. To address this issue, Academy scientist Peter Roopnarine is working with Laurie Anderson from Louisiana State University and David Goodwin from Denison University to collect and analyze three different types of mollusks from the Gulf Coast.

These animals are continually building their shells, and if contaminants are present in their environment, they can incorporate those compounds into their shells. Roopnarine and his colleagues will study growth rings in the shells - much like scientists would study tree rings - to determine how quickly harmful compounds from the oil become incorporated into the animals’ homemade armor. They will also sample tissues from the animals over the next four months to test for hydrocarbons, and will measure changes in growth rate and survivorship. In addition to its value in informing conservation and policy decisions, this research will have direct implications for the region’s commercial oyster fisheries.

"We know that mollusks can capture this kind of information in their shells because of our ongoing work in San Francisco Bay," says Roopnarine, Curator of Geology at the California Academy of Sciences. "We have been analyzing shellfish from across the Bay over the past three years, and we have documented that the animals from the more polluted areas, like the waters around Candlestick Park, have incorporated vanadium and nickel into their shells - two metals that are common in crude oil. It appears that the metals can be substituted for calcium as the animals build their calcium-carbonate shells."

By studying oysters, tellinid clams, and periwinkles in the Gulf, the scientists will be able to monitor three different pathways for hydrocarbons into the food web, since oysters are stationary filter feeders that eat mostly plankton, tellinid clams are stationary bottom feeders that eat mostly detritus, and periwinkles are mobile grazers that eat mostly algae. If the team’s results show that all of these animals are incorporating hydrocarbons into their shells at the same rate, this would indicate that they are likely pulling these compounds directly from the water column. However, if there is a difference in how quickly hydrocarbons show up in their shells, it would suggest that the animals are acquiring the contaminants at different rates through their food sources.

The scientists collected their first set of specimens in early May from the vicinities of Grand Isle, Louisiana and Dauphin Island, Alabama, before the oil had reached those regions. These specimens will provide pre-spill baseline data for the study. Over the course of the summer, they will collect additional specimens from both sites to monitor the change in hydrocarbon levels as the oil spreads and begins to work its way through the food chain.

As primary consumers in the food chain, oysters, clams, and periwinkles will likely be among the first animals to begin accumulating hydrocarbons and heavy metals, but they will not be the last. In much the same way that mercury becomes concentrated in large, predatory fish, the harmful compounds released during an oil spill may get passed on to the marine organisms that feed on shellfish. While hydrocarbons are organic compounds that will eventually break down over time, the staying power and long-term impacts of heavy metals like vanadium and nickel in the food web are unknown. Additionally, many hydrocarbons are known to be carcinogenic, and they could cause any number of physiological problems for animals that ingest them in high quantities. While much remains unknown, Roopnarine’s research provides a framework to answer some of these questions, by monitoring and predicting community response over both short and long time horizons.

About the California Academy of Sciences:
The California Academy of Sciences is the only institution in the world to combine a museum, aquarium, planetarium, and world-class research and education programs under one roof. This unique combination allows visitors to explore the depths of a Philippine coral reef, climb into the canopy of a Costa Rican rainforest, and fly to the outer reaches of the Universe - all in a single visit. Designed by award-winning architect Renzo Piano, the building sets a new standard for sustainable architecture and recently received the highest possible rating from the U.S. Green Building Council. It also provides a home for the Academy’s research scientists, who launch dozens of expeditions each year to document biodiversity around the world, as well as the museum’s 26 million research specimens - essential tools for comparative studies on the history and future of life on Earth.

The California Academy of Sciences is home to Steinhart Aquarium, Morrison Planetarium, Kimball Natural History Museum, and world-class research and education programs—all under one living roof. The new Academy, designed by award-winning architect Renzo Piano, opened to the public on September 27, 2008. Admission to the Academy is: $24.95 for adults; $19.95 for youth ages 12 to 17, Seniors ages 65+ and students with valid ID; $14.95 for children ages 4 to 11; and free for children ages 3 and younger. The Academy is free to the public on the third Wednesday of each month. Admission fees include all exhibits and shows. Hours are 9:30 am – 5:00 pm Monday – Saturday, and 11:00 am – 5:00 pm on Sunday. The Academy is closed on Thanksgiving and Christmas. www.calacademy.org. (415) 379-8000.

Andrew Ng | EurekAlert!
Further information:
http://www.calacademy.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>