Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists report first remote, underwater detection of harmful algae, toxins

16.07.2009
NOAA, MBARI researchers team up

Scientists at NOAA's National Centers for Coastal Ocean Science and the Monterey Bay Aquarium Research Institute (MBARI) have successfully conducted the first remote detection of a harmful algal species and its toxin below the ocean's surface. The achievement was recently reported in the June issue of Oceanography.

This achievement represents a significant milestone in NOAA's effort to monitor the type and toxicity of harmful algal blooms (HABs). HABs are considered to be increasing not only in their global distribution, but also in the frequency, duration, and severity of their effects. HABs damage coastal ecosystem health and pose threats to humans as well as marine life. Climate change is expected to exacerbate this trend, since many critical processes that govern HABs dynamics, such as water temperature and ocean circulation, are influenced by climate.

A MBARI-designed robotic instrument called the Environmental Sample Processor, or 'ESP,' designed as a fully-functional analytical laboratory in the sea, lets researchers collect the algal cells and extract the genetic information required for organism identification as well as the toxin needed to assess the risk to humans and wildlife. The ESP then conducts specialized, molecular-based measurements of species and toxin abundance, and transmits results to the laboratory via radio signals.

"This represents the first autonomous detection of both a HAB species and its toxin by an underwater sensor," notes Greg Doucette, Ph.D., a research oceanographer at NOAA's Center for Coastal Environmental Health and Biomolecular Research laboratory in Charleston, S.C. "It allows us to determine not only the organism causing a bloom, but also the toxicity of the event, which ultimately dictates whether it is a threat to the public and the ecosystem."

For the first demonstration of the ESP's ability to detect HABs and their toxins, Doucette and his MBARI colleague, Chris Scholin, Ph.D., targeted certain members of the algal genus Pseudo-nitzschia and their neurotoxin, domoic acid in Monterey Bay, Calif.

Pseudo-nitzschia and domoic acid have been a concern in the Monterey Bay area for well over a decade. In 1991, the first U.S. outbreak of domoic acid poisoning was documented in Monterey Bay. This outbreak resulted in the unusual deaths of numerous pelicans and cormorants that ingested sardines and anchovies, which had accumulated the domoic acid by feeding on a bloom of the toxic algae.

In the spring of 1998, a mass mortality of sea lions in and around the Monterey Bay area was attributed to the sea lions' feeding on domoic acid contaminated anchovies. Since that time, Pseudo-nitzschia and domoic acid have appeared on virtually an annual basis in California coastal waters and are the objects of an intensive statewide monitoring program run by the California Dept. of Public Health. Humans also can be affected by the toxin through consumption of contaminated seafood such as shellfish.

"Our public health monitoring program is one of the many groups that can benefit directly from the ESP technology and ability to provide an early warning of impending bloom activity and toxicity," said Gregg Langlois, director of the state of California's Marine Biotoxin Monitoring Program. "This is critical information for coastal managers and public health officials in mitigating impacts on the coastal ecosystem, since the toxicity of these algae can vary widely from little or no toxicity to highly toxic."

Beyond improving forecasting of HABs, this research will contribute to the rapidly emerging U.S. Integrated Ocean Observing System (IOOS) by adding a new way to make coastal ocean observations. IOOS is a network of people and technology coordinated by NOAA that work together to generate and disseminate continuous data on our coastal waters, Great Lakes, and oceans.

NOAA understands and predicts changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages our coastal and marine resources. Visit: http://www.noaa.gov.

On the Web:

National Centers for Coastal Ocean Science: http://coastalscience.noaa.gov/

Integrated Ocean Observing System: http://www.ioos.gov/

Monterey Bay Aquarium Research Institute: http://www.mbari.org/

Ben Sherman | EurekAlert!
Further information:
http://www.noaa.gov
http://www.mbari.org/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>