Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outline strategy to limit global warming

05.05.2010
Efforts range from 'Herculean' to achievable

Major greenhouse gas-emitting countries agreed in the December, 2009, climate talks in Copenhagen that substantial action is required to limit the increase of the global average temperature to less than 2 degrees Celsius (3.6 degrees Fahrenheit).

In a paper appearing May 3 in the journal Proceedings of the National Academy of Sciences (PNAS), Veerabhadran Ramanathan and Yangyang Xu, climate researchers at Scripps Institution of Oceanography, University of California, San Diego, have identified three avenues by which the major greenhouse gas-emitting countries countries can avoid reaching the warming threshold. This threshold is a point beyond which many scientists believe climate change will present unmanageable negative consequences for society.

Researchers suggest that exceeding this threshold would trigger irreversible phenomena such as widespread release of methane from melting permafrost and large-scale glacial melt. In turn, these would exacerbate climate change-related problems such as sea-level rise and acceleration of global warming.

"Without an integrated approach that combines carbon dioxide emission reductions with reductions in other climate warmers, and without climate-neutral air pollution laws, we are certain to pass the 2 C threshold during this century," said Ramanathan. However, he added, "I am delighted by the availability of several 'low-hanging fruits' that can help us avert unmanageable climate changes."

Using a synthesis of National Science Foundation (NSF)-funded research performed over the last 20 years, Ramanathan and Xu describe three steps that must be taken to avoid the threshold. They stress that carbon dioxide control alone is not enough.

"The low-hanging fruits approach to one of mankind's great challenges is very appealing because it's win-win," said Jay Fein, program director in NSF's Division of Atmospheric and Geospace Sciences. "It cleans up the environment, protects human health and helps to sustain the 2 C threshold."

The first and second recommended steps in the PNAS paper include stabilizing carbon dioxide concentrations in the atmosphere; and fashioning warming-neutral pollution laws. These laws would balance the removal of aerosols that have an atmospheric cooling effect with the removal of warming agents such as soot and ozone.

Thirdly, the authors advocate achieving immediate cooling through reductions in methane, hydrofluorocarbons and other greenhouse gases that last in the atmosphere for short periods of time.

They believe that simultaneous pursuit of these strategies could reduce the probability of reaching the temperature threshold to less than 10 percent before the year 2050.

The 2 degrees Celsius global temperature increase limit translates to a radiant energy increase of 2.5 watts per square meter. Ramanathan and Xu note that even if greenhouse gas emissions stop increasing in the next five years, human activities will probably create almost double that much radiant energy.

That excess radiant energy, however, is partially compensated for by the masking effect of certain kinds of aerosols that are produced in large part by pollution.

Tiny particles of sulfates and other pollutants serve to cool the atmosphere by reflecting sunlight rather than absorbing it, directing heat away from the Earth's surface.

Therefore, the authors state, pollution control measures must take into account and counterbalance the warming that will happen when these pollutants are removed from the skies.

Ramanathan and Xu acknowledge that there are uncertainties about the nature of aerosols, and the sensitivity of climate to mitigation actions, that make the effects of their suggested course of action hard to determine with precision.

They propose demonstration projects to clarify and reduce the uncertainties, and verify the effectiveness of the various mitigation avenues proposed.

Avoiding the warming threshold requires holding carbon dioxide levels to less than 441 parts per million (ppm), according to the authors, only slightly higher than today's 389 ppm.

This equates to a 50-percent reduction in greenhouse gas emissions by 2050 and an 80 percent reduction by 2100. Ramanathan and Xu acknowledge that such drastic reduction will require a "portfolio of actions in the energy, industrial, agricultural, and forestry sections."

Some of these actions will require development of new technologies.

"A massive decarbonization of the energy sector is necessary to accomplish this Herculean task," the authors write.

But strategies not focused on carbon dioxide reduction can largely take advantage of existing technologies and enforcement of existing regulations, say the authors.

Actions that can be taken immediately include replacement of biomass-fueled stoves with cleaner alternatives in developing countries, and retrofitting of diesel filters on vehicles throughout the world.

The authors also point out that the world has succeeded before in removing dangerous warming agents.

The 1987 Montreal Protocol regulated the use of chlorofluorocarbons; the damaging effect of the chemicals on the planet's ozone layer was diminished.

Ramanathan and Xu note that were it not for the Montreal Protocol, the warming effect of chlorofluorocarbons would have added between 0.6 and 1.6 watts per square meter of extra heat energy by now.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>