Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outline strategy to limit global warming

05.05.2010
Efforts range from 'Herculean' to achievable

Major greenhouse gas-emitting countries agreed in the December, 2009, climate talks in Copenhagen that substantial action is required to limit the increase of the global average temperature to less than 2 degrees Celsius (3.6 degrees Fahrenheit).

In a paper appearing May 3 in the journal Proceedings of the National Academy of Sciences (PNAS), Veerabhadran Ramanathan and Yangyang Xu, climate researchers at Scripps Institution of Oceanography, University of California, San Diego, have identified three avenues by which the major greenhouse gas-emitting countries countries can avoid reaching the warming threshold. This threshold is a point beyond which many scientists believe climate change will present unmanageable negative consequences for society.

Researchers suggest that exceeding this threshold would trigger irreversible phenomena such as widespread release of methane from melting permafrost and large-scale glacial melt. In turn, these would exacerbate climate change-related problems such as sea-level rise and acceleration of global warming.

"Without an integrated approach that combines carbon dioxide emission reductions with reductions in other climate warmers, and without climate-neutral air pollution laws, we are certain to pass the 2 C threshold during this century," said Ramanathan. However, he added, "I am delighted by the availability of several 'low-hanging fruits' that can help us avert unmanageable climate changes."

Using a synthesis of National Science Foundation (NSF)-funded research performed over the last 20 years, Ramanathan and Xu describe three steps that must be taken to avoid the threshold. They stress that carbon dioxide control alone is not enough.

"The low-hanging fruits approach to one of mankind's great challenges is very appealing because it's win-win," said Jay Fein, program director in NSF's Division of Atmospheric and Geospace Sciences. "It cleans up the environment, protects human health and helps to sustain the 2 C threshold."

The first and second recommended steps in the PNAS paper include stabilizing carbon dioxide concentrations in the atmosphere; and fashioning warming-neutral pollution laws. These laws would balance the removal of aerosols that have an atmospheric cooling effect with the removal of warming agents such as soot and ozone.

Thirdly, the authors advocate achieving immediate cooling through reductions in methane, hydrofluorocarbons and other greenhouse gases that last in the atmosphere for short periods of time.

They believe that simultaneous pursuit of these strategies could reduce the probability of reaching the temperature threshold to less than 10 percent before the year 2050.

The 2 degrees Celsius global temperature increase limit translates to a radiant energy increase of 2.5 watts per square meter. Ramanathan and Xu note that even if greenhouse gas emissions stop increasing in the next five years, human activities will probably create almost double that much radiant energy.

That excess radiant energy, however, is partially compensated for by the masking effect of certain kinds of aerosols that are produced in large part by pollution.

Tiny particles of sulfates and other pollutants serve to cool the atmosphere by reflecting sunlight rather than absorbing it, directing heat away from the Earth's surface.

Therefore, the authors state, pollution control measures must take into account and counterbalance the warming that will happen when these pollutants are removed from the skies.

Ramanathan and Xu acknowledge that there are uncertainties about the nature of aerosols, and the sensitivity of climate to mitigation actions, that make the effects of their suggested course of action hard to determine with precision.

They propose demonstration projects to clarify and reduce the uncertainties, and verify the effectiveness of the various mitigation avenues proposed.

Avoiding the warming threshold requires holding carbon dioxide levels to less than 441 parts per million (ppm), according to the authors, only slightly higher than today's 389 ppm.

This equates to a 50-percent reduction in greenhouse gas emissions by 2050 and an 80 percent reduction by 2100. Ramanathan and Xu acknowledge that such drastic reduction will require a "portfolio of actions in the energy, industrial, agricultural, and forestry sections."

Some of these actions will require development of new technologies.

"A massive decarbonization of the energy sector is necessary to accomplish this Herculean task," the authors write.

But strategies not focused on carbon dioxide reduction can largely take advantage of existing technologies and enforcement of existing regulations, say the authors.

Actions that can be taken immediately include replacement of biomass-fueled stoves with cleaner alternatives in developing countries, and retrofitting of diesel filters on vehicles throughout the world.

The authors also point out that the world has succeeded before in removing dangerous warming agents.

The 1987 Montreal Protocol regulated the use of chlorofluorocarbons; the damaging effect of the chemicals on the planet's ozone layer was diminished.

Ramanathan and Xu note that were it not for the Montreal Protocol, the warming effect of chlorofluorocarbons would have added between 0.6 and 1.6 watts per square meter of extra heat energy by now.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>