Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists outline strategy to limit global warming

Efforts range from 'Herculean' to achievable

Major greenhouse gas-emitting countries agreed in the December, 2009, climate talks in Copenhagen that substantial action is required to limit the increase of the global average temperature to less than 2 degrees Celsius (3.6 degrees Fahrenheit).

In a paper appearing May 3 in the journal Proceedings of the National Academy of Sciences (PNAS), Veerabhadran Ramanathan and Yangyang Xu, climate researchers at Scripps Institution of Oceanography, University of California, San Diego, have identified three avenues by which the major greenhouse gas-emitting countries countries can avoid reaching the warming threshold. This threshold is a point beyond which many scientists believe climate change will present unmanageable negative consequences for society.

Researchers suggest that exceeding this threshold would trigger irreversible phenomena such as widespread release of methane from melting permafrost and large-scale glacial melt. In turn, these would exacerbate climate change-related problems such as sea-level rise and acceleration of global warming.

"Without an integrated approach that combines carbon dioxide emission reductions with reductions in other climate warmers, and without climate-neutral air pollution laws, we are certain to pass the 2 C threshold during this century," said Ramanathan. However, he added, "I am delighted by the availability of several 'low-hanging fruits' that can help us avert unmanageable climate changes."

Using a synthesis of National Science Foundation (NSF)-funded research performed over the last 20 years, Ramanathan and Xu describe three steps that must be taken to avoid the threshold. They stress that carbon dioxide control alone is not enough.

"The low-hanging fruits approach to one of mankind's great challenges is very appealing because it's win-win," said Jay Fein, program director in NSF's Division of Atmospheric and Geospace Sciences. "It cleans up the environment, protects human health and helps to sustain the 2 C threshold."

The first and second recommended steps in the PNAS paper include stabilizing carbon dioxide concentrations in the atmosphere; and fashioning warming-neutral pollution laws. These laws would balance the removal of aerosols that have an atmospheric cooling effect with the removal of warming agents such as soot and ozone.

Thirdly, the authors advocate achieving immediate cooling through reductions in methane, hydrofluorocarbons and other greenhouse gases that last in the atmosphere for short periods of time.

They believe that simultaneous pursuit of these strategies could reduce the probability of reaching the temperature threshold to less than 10 percent before the year 2050.

The 2 degrees Celsius global temperature increase limit translates to a radiant energy increase of 2.5 watts per square meter. Ramanathan and Xu note that even if greenhouse gas emissions stop increasing in the next five years, human activities will probably create almost double that much radiant energy.

That excess radiant energy, however, is partially compensated for by the masking effect of certain kinds of aerosols that are produced in large part by pollution.

Tiny particles of sulfates and other pollutants serve to cool the atmosphere by reflecting sunlight rather than absorbing it, directing heat away from the Earth's surface.

Therefore, the authors state, pollution control measures must take into account and counterbalance the warming that will happen when these pollutants are removed from the skies.

Ramanathan and Xu acknowledge that there are uncertainties about the nature of aerosols, and the sensitivity of climate to mitigation actions, that make the effects of their suggested course of action hard to determine with precision.

They propose demonstration projects to clarify and reduce the uncertainties, and verify the effectiveness of the various mitigation avenues proposed.

Avoiding the warming threshold requires holding carbon dioxide levels to less than 441 parts per million (ppm), according to the authors, only slightly higher than today's 389 ppm.

This equates to a 50-percent reduction in greenhouse gas emissions by 2050 and an 80 percent reduction by 2100. Ramanathan and Xu acknowledge that such drastic reduction will require a "portfolio of actions in the energy, industrial, agricultural, and forestry sections."

Some of these actions will require development of new technologies.

"A massive decarbonization of the energy sector is necessary to accomplish this Herculean task," the authors write.

But strategies not focused on carbon dioxide reduction can largely take advantage of existing technologies and enforcement of existing regulations, say the authors.

Actions that can be taken immediately include replacement of biomass-fueled stoves with cleaner alternatives in developing countries, and retrofitting of diesel filters on vehicles throughout the world.

The authors also point out that the world has succeeded before in removing dangerous warming agents.

The 1987 Montreal Protocol regulated the use of chlorofluorocarbons; the damaging effect of the chemicals on the planet's ozone layer was diminished.

Ramanathan and Xu note that were it not for the Montreal Protocol, the warming effect of chlorofluorocarbons would have added between 0.6 and 1.6 watts per square meter of extra heat energy by now.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>