Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outline planetary boundaries: A safe operating space for humanity

28.09.2009
New approaches are needed to help humanity deal with climate change and other global environmental threats that lie ahead in the 21st century, according to a group of 28 internationally renowned scientists.

The scientists propose that global biophysical boundaries, identified on the basis of the scientific understanding of the earth system, can define a "safe planetary operating space" that will allow humanity to continue to develop and thrive for generations to come.

This new approach to sustainable development is conveyed in the current issue of the scientific journal Nature. The authors have made a first attempt to identify and quantify a set of nine planetary boundaries, including climate change, freshwater use, biological diversity, and aerosol loading.

The research was performed by a working group at UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS), in cooperation with the Stockholm Resilience Centre at Stockholm University.

One important strand of the research behind this article is based in the global project known as IHOPE. The goal of the Integrated History and future Of People on Earth (IHOPE) project is to understand the interactions of the environmental and human process over the ten to hundred millennia to determine how human and biophysical changes have contributed to Earth system dynamics. The IHOPE working group is assembled at NCEAS today.

The scientists emphasize that the rapid expansion of human activities since the industrial revolution has now generated a global geophysical force equivalent to some of the great forces of nature.

"We are entering the Anthropocene, a new geological era in which our activities are threatening the earth's capacity to regulate itself," said co-author Will Steffen, professor at the Australian National University (ANU) and director of the ANU Climate Change Institute. "We are beginning to push the planet out of its current stable Holocene state, the warm period that began about 10,000 years ago and during which agriculture and complex societies, including our own, have developed and flourished. The expanding human enterprise could undermine the resilience of the Holocene state, which would otherwise continue for thousands of years into the future."

Robert Costanza, director of the Gund Institute at the University of Vermont and one of the IHOPE project leaders at NCEAS, said: "Human history has traditionally been cast in terms of the rise and fall of great civilizations, wars, and specific human achievements. This history leaves out the important ecological and climate contexts that shaped and mediated these events. Human history and earth system history have traditionally been developed independently, with little interaction among the academic communities. The Nature article provides evidence of the necessities to establish a thorough, long-term historical understanding of the exchange between human societies and the earth system, in order to set standards for safe navigation within planetary boundaries and avoid crossing dangerous thresholds."

Planetary boundaries is a way of thinking that will not replace politics, economics, or ethics, explained environmental historian Sverker Sörlin of the Stockholm Resilience Centre and the Royal Institute of Technology, Stockholm. "But it will help tell all of us where the dangerous limits are and therefore when it is ethically unfair to allow more emissions of dangerous substances, further reduction of biodiversity, or to continue the erosion of the resource base. It provides the ultimate guardrails that can help societies to take action politically, economically. Planetary boundaries should be seen both as signals of the need for caution and as an encouragement to innovation and new thinking of how to operate safely within these boundaries while at same time securing human well being for all."

Lead author Johan Rockström, director of the Stockholm Resilience Centre at Stockholm University, said: "The human pressure on the Earth System has reached a scale where abrupt global environmental change can no longer be excluded. To continue to live and operate safely, humanity has to stay away from critical 'hard-wired' thresholds in Earth's environment, and respect the nature of the planet's climatic, geophysical, atmospheric and ecological processes. Transgressing planetary boundaries may be devastating for humanity, but if we respect them we have a bright future for centuries ahead."

In addition to the authors named above, the group of IHOPE-related scientists who contributed to the Nature article includes systems ecologist Carl Folke, of the Stockholm Resilience Centre, and archaeologist Sander van der Leeuw at Arizona State University. Among other authors are Katherine Richardson, an oceanographic biologist with the University of Copenhagen, and Nobel laureate Paul Crutzen, an atmospheric chemist with the Max Planck Institute, Mainz, Germany.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>