Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Optimize New Space Station Water System

13.11.2008
Two hundred and fifty miles above the Earth puts you a long way from the nearest kitchen tap. And at $10,000 a pint, the cost of shipping fresh water aboard the space shuttle is, well, astronomical.

So astronauts on the International Space Station have to recapture every possible drop. That includes water evaporated from showers, shaving, tooth brushing and hand washing, plus perspiration and water vapor that collects within the astronauts' space suits. They even transfer water from the fuel cells that provide electric power to the space shuttle.

Until now, however, NASA has not attempted to tap one major potential source of water: urine. That will soon change with the deployment of the new Water Recovery System. It departs Friday, Nov. 14, from the Kennedy Space Center on the Space Shuttle Endeavor.

The Water Recovery System, made possible in part by researchers at Michigan Technological University, can transform ordinary pee into water so pure it rivals the cleanest on Earth.

David Hand was the lead researcher on the project, which ran from 1993 to 1997 at Tech. It was a memorable time. "We received jars of sweat from NASA," he said. "Then we did experiments on the system, measured it at every step, evaluated it and made recommendations."

Under the new system, urine undergoes an initial distillation process and then joins the rest of the recovered fluids in the water processor. The processor filters out solids such as hair and lint and then sends the wastewater through a series of multifiltration beds, in which contaminants are removed through adsorption and ion exchange.

"What's left over in the water are a few non adsorbing organics and solvents, like nail polish remover, and they go into a reactor that breaks them all down to carbon dioxide, water and a few ions," said Hand, a professor of civil and environmental engineering.

After a final check for microbes, the water is again clean and ready to drink.

NASA's Layne Carter, the Water Recovery System lead engineer at Marshall Spaceflight Center in Huntsville, Ala., credits Hand and the rest of the Tech research team with making the system as good as it is. "Without a doubt, if it hadn't been for their modeling effort, we never would have been able to redesign the multifiltration beds and achieve that level of efficiency," Carter said. "They did a fantastic job."

Using mathematical models, the Tech researchers helped improve the overall design of the multifiltration beds, The redesigned beds have 30 percent more capacity, which means that NASA doesn't have to send about 60 pounds of additional supplies up to the space station annually. "That may seem trivial, but it saves NASA about $600,000 each year," Carter said.

For more information on the Water Recovery System, visithttp://www.nasa.gov/home/hqnews/2008/may/HQ_08119_ISS_Water_System.html

Contact: David Hand, 906-487-2777, dwhand@mtu.edu; Marcia Goodrich, writer, 906-487-2343, mtunews@mtu.edu

Jennifer Morcone | Newswise Science News
Further information:
http://www.nasa.gov
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>