Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Monitor the Health of the Caney Fork River by Fishing with Electricity

07.09.2011
A group of fisheries scientists from Tennessee Tech University are busy monitoring the health of the Caney Fork River by pumping electricity into the water.

Though water and electricity are not usually a good mix, the combination is one of the best methods for collecting fish and determining their health. The electricity stuns them long enough to allow them to be scooped up in long nets, measured and tossed back.

“The integrity of the Center Hill Dam has been compromised and as the engineers fix it, everything downstream is changing and people want to know about it,” said Phil Bettoli, the primary investigator of the project and assistant leader of the U.S. Geological Survey’s Cooperative Fishery Research Unit, a joint effort between TTU, USGS, the U.S. Fish and Wildlife Service and the Tennessee Wildlife Resources Agency.

“The Army Corps of Engineers hired us to do the assessment of what is going on in that fish community now, but when they finish their repairs to the dam, they may go back to the way they used to operate the dam which is going to change the fish community again. We want to be able to predict what’s going to happen then.”

As engineers pump concrete into areas where the water has eroded the limestone into which the dam was built, a team of TTU researchers is collecting fish on the river at five locations below the dam. They have been there for two years and will be there for the next year and a half, working with two grants worth nearly $300,000 from the Army Corps of Engineers.

In the nearly four years that the dam repair has been underway, the biologists have found that the ecosystem has gotten healthier. The engineers have used a small gate that releases water and also aerates it at the same time, providing more dissolved oxygen for the fish and insects in the river. Also, water is being released on a more regular basis to lessen pressure on the structure, which provides a more consistent environment for the organisms living downstream.

“The dam was built for two main reasons; for electricity and flood control,” Bettoli, who is also a professor of biology at TTU, said. “They didn’t think about wildlife habitats in the 1940s when they built this. Now, you can’t ignore it.”

Researchers from a team of more than a dozen undergraduate and graduate students can be found on the river during all four seasons, at all times of the day. They are found either in a small flat-bottomed boat equipped with a small generator and long probes that run an electric current through the water, or wading through the river themselves with packs that generate electricity on their backs, nets in hand.

“I wanted this job because a lot of rivers are having the same issues the Caney Fork is,” said Tomas Ivasauskas, a TTU graduate who is working on the project. “If the engineers weren’t pumping the concrete in, the whole dam would have been compromised.”

Once the study is complete, their work will also provide a baseline of information for dam operators, as well as the TWRA, which manages a popular trout fishery on the river and the U.S. Fish and Wildlife Service, which is interested in the impact of the work on the Cumberland River and its endangered mussel populations. With the knowledge, they will be able to monitor the effects of the dam on the river and change their operations, if necessary.

Nearing the end of the first two-year grant, the team is getting ready to present its research. Studying fish populations below dams is difficult because researchers must alter their schedules to work around the various times the dam is generating power. Biologists also tend to consider dammed rivers to be artificial ecosystems; many native species are often killed off when a dam is built and other, nonnative species move in.

“There’s not a whole lot of this kind of work going on in North America under large hydroelectric dams,” Bettoli said. “The thinking was that people were not interested in the biotic integrity of radically altered systems. We expect a lot of questions and interest from our peers.”

Lori Shull | Newswise Science News
Further information:
http://www.tntech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>