Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify Deepwater Horizon Oil on shore even years later, after most has degraded

13.06.2014

Developed unique way to fingerprint oil and assess how it changes over time

Years after the 2010 Deepwater Horizon Oil spill, oil continues to wash ashore as oil-soaked "sand patties," persists in salt marshes abutting the Gulf of Mexico, and questions remain about how much oil has been deposited on the seafloor.


Researchers used comprehensive two-dimensional gas chromatography (GCxGC) in their oil spill forensics to measure levels of degradation in biomarkers. THe biomarkers here are shown inside the dotted line.

Credit: Christoph Aeppli, Bigelow Laboratory for Ocean Sciences


Years after the 2010 Deepwater Horizon Oil spill, oil continues to wash ashore as oil-soaked "sand patties."

Credit: Catherine Carmichael, Woods Hole Oceanographic Institution

Scientists from Woods Hole Oceanographic Institution and Bigelow Laboratory for Ocean Sciences have developed a unique way to fingerprint oil, even after most of it has degraded, and to assess how it changes over time. Researchers refined methods typically used to identify the source of oil spills and adapted them for application on a longer time frame to successfully identify Macondo Well oil, years after the spill.

"We were looking at two questions: how could we identify the oil on shore, now four years after the spill, and how the oil from the spill was weathering over time," explained Christoph Aeppli, Senior Research Scientist at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine, and lead author of the study reported in Environmental Science & Technology. Aeppli worked with his then-colleagues at Woods Hole Oceanographic Institution, and University of California, Santa Barbara on the investigation and report.

Researchers used comprehensive two-dimensional gas chromatography (GCxGC) in their oil spill forensics to measure levels of degradation in biomarkers. Biomarkers are molecular fossils. Each reservoir has specific amounts of different biomarkers, so oil biomarkers serve as identifiers much like human fingerprints.

Biomarkers are usually recalcitrant in reservoirs, but when exposed for a long time to the environment, some are altered due to natural processes. Oil consists of tens of thousands of compounds, and many of them can be degraded by bacteria or broken down by sunlight. This research was designed to determine the resiliency of specific biomarkers and to see how they held up when exposed to environmental conditions on shore.

"We found that some biomarkers—homohopanes and triaromoatic steroids (TAS), specifically – degraded within a few years following the Deepwater Horizon spill," said Chris Reddy, a scientist at Woods Hole Oceanographic Institution and co-author of the paper. "These biomarkers are not as resilient as once thought and they may provide a future window into determining how much, and how quickly, these oil components may linger in the environment when exposed to air, sunlight, and the elements."

Researchers sought to determine the specific source of the biomarkers degradation. Through analysis of oil-soaked "sand patties" collected along the Gulf shore over a 28-month period, they found that most biomarker compounds were recalcitrant and could be used to identify DWH oil. Some biomarkers, however, degraded. "This knowledge is helping us improve our oil spill forensics. It is providing a foundation for better, longer-term identification techniques that account for exposure of oil to wind, waves, sunlight, and microbial degradation over long times," added Aeppli.

Aeppli, Reddy and colleague Dave Valentine from UC Santa Barbara will apply this new oil fingerprinting technique to process tens of thousands of samples collected shortly after the DWH spill.

###

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Bigelow Laboratory for Ocean Sciences conducts research ranging from microbial oceanography to large-scale ocean processes that affect the global environment. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are spurring significant economic growth in the state.

Darlene Crist | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>