Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find climate change to have paradoxical effects in coastal wetlands

25.03.2009
Rising atmospheric carbon dioxide is largely responsible for recent global warming and the rise in sea levels. However, a team of scientists, including two Smithsonian ecologists, have found that this same increase in CO2 may ironically counterbalance some of its negative effects on one of the planet's most valuable ecosystems—wetlands. The team's findings are being published in the Proceedings of the National Academy of Sciences the week of March 23.

The team conducted their study for two years (2006 – 2007), during which they focused on the role that organic matter, both growing and decaying, plays on soil elevation in wetlands and the effect CO2 has on this process.

Coastal wetlands must build upward through the accumulation of mineral and organic matter to maintain a constant elevation relative to water levels; otherwise, they will drown and disappear. Climate change, however, is causing acceleration in the rise of sea level, which would seemingly put wetlands at risk of excessive flooding. "Our findings show that elevated CO2 stimulates plant productivity, particularly below ground, thereby boosting marsh surface elevation," said Adam Langley, the paper's lead author.

Patrick Megonigal, the paper's corresponding author, added "We found that by stimulating root growth, thus raising a marsh's soil elevation, elevated CO2 may also increase the capacity for coastal wetlands to tolerate relative rises in sea level." Both scientists are ecologists at the Smithsonian Environmental Research Center in Edgewater, Md.

These findings bear particular importance given the threat of accelerating sea-level rise to coastal wetlands worldwide. Some evidence suggests that only a two-millimeter increase in the rate of sea-level rise will threaten and possibly eliminate large portions of mid-Atlantic marshes. And the loss of these wetlands threatens critical services that the ecosystems provide, such as supporting commercially important fisheries, providing wildlife habitat, improving water quality and buffering human populations from oceanic forces.

Determining soil-surface elevation change is important for two reasons. First, the loss in soil elevation relative to local sea level may provide an early indication of the collapse of a tidal wetland. Second, tracking elevation changes in marsh soils through time, along with measurements of plant productivity and other environmental variables, allow scientists to identify specific mechanisms critical to the persistence of tidal wetlands under accelerating sea-level rise. To examine how CO2 may interact with other factors that will accompany sea-level rise, the authors also manipulated CO2, salinity and flooding in a companion greenhouse study.

The team of scientists from the Smithsonian Institution and the U.S. Geological Survey added CO2 gas to a tidal marsh at the Smithsonian Environmental Research Center. The gas flowed continuously from the bottom upward through the top of large (two-meter diameter) cylinders surrounding marsh plots. Half of the plots also received added soil nitrogen, simulating increasing water pollution, which tended to diminish the positive effects of elevated CO2 on marsh surface elevation. Changes in elevation were measured with an instrument developed by the U.S. Geological Survey that can detect changes in elevation as little as one millimeter. According to Langley, "Elevated CO2 doubled the short-term rate of elevation gain in our marsh. Our next step is to determine whether this will continue in the long-term and in the face of actual sea-level rise and other climatic changes."

Though marshes appear to benefit from CO2 in the short-term, the scientists stress that increasing CO2 levels will continue to warm the Earth, melt glaciers and expand ocean water, thus accelerating sea-level rise. Ultimately, rapidly rising seas could outstrip the positive effects of CO2 on the marshes that they have observed.

"Wetlands are some of the most specialized and valuable ecosystems in the world, not only to wildlife but humans as well," Megonigal said. "The sooner we can understand the effect global warming is having on them, the better we will be equipped to save them."

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>