Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find climate change to have paradoxical effects in coastal wetlands

25.03.2009
Rising atmospheric carbon dioxide is largely responsible for recent global warming and the rise in sea levels. However, a team of scientists, including two Smithsonian ecologists, have found that this same increase in CO2 may ironically counterbalance some of its negative effects on one of the planet's most valuable ecosystems—wetlands. The team's findings are being published in the Proceedings of the National Academy of Sciences the week of March 23.

The team conducted their study for two years (2006 – 2007), during which they focused on the role that organic matter, both growing and decaying, plays on soil elevation in wetlands and the effect CO2 has on this process.

Coastal wetlands must build upward through the accumulation of mineral and organic matter to maintain a constant elevation relative to water levels; otherwise, they will drown and disappear. Climate change, however, is causing acceleration in the rise of sea level, which would seemingly put wetlands at risk of excessive flooding. "Our findings show that elevated CO2 stimulates plant productivity, particularly below ground, thereby boosting marsh surface elevation," said Adam Langley, the paper's lead author.

Patrick Megonigal, the paper's corresponding author, added "We found that by stimulating root growth, thus raising a marsh's soil elevation, elevated CO2 may also increase the capacity for coastal wetlands to tolerate relative rises in sea level." Both scientists are ecologists at the Smithsonian Environmental Research Center in Edgewater, Md.

These findings bear particular importance given the threat of accelerating sea-level rise to coastal wetlands worldwide. Some evidence suggests that only a two-millimeter increase in the rate of sea-level rise will threaten and possibly eliminate large portions of mid-Atlantic marshes. And the loss of these wetlands threatens critical services that the ecosystems provide, such as supporting commercially important fisheries, providing wildlife habitat, improving water quality and buffering human populations from oceanic forces.

Determining soil-surface elevation change is important for two reasons. First, the loss in soil elevation relative to local sea level may provide an early indication of the collapse of a tidal wetland. Second, tracking elevation changes in marsh soils through time, along with measurements of plant productivity and other environmental variables, allow scientists to identify specific mechanisms critical to the persistence of tidal wetlands under accelerating sea-level rise. To examine how CO2 may interact with other factors that will accompany sea-level rise, the authors also manipulated CO2, salinity and flooding in a companion greenhouse study.

The team of scientists from the Smithsonian Institution and the U.S. Geological Survey added CO2 gas to a tidal marsh at the Smithsonian Environmental Research Center. The gas flowed continuously from the bottom upward through the top of large (two-meter diameter) cylinders surrounding marsh plots. Half of the plots also received added soil nitrogen, simulating increasing water pollution, which tended to diminish the positive effects of elevated CO2 on marsh surface elevation. Changes in elevation were measured with an instrument developed by the U.S. Geological Survey that can detect changes in elevation as little as one millimeter. According to Langley, "Elevated CO2 doubled the short-term rate of elevation gain in our marsh. Our next step is to determine whether this will continue in the long-term and in the face of actual sea-level rise and other climatic changes."

Though marshes appear to benefit from CO2 in the short-term, the scientists stress that increasing CO2 levels will continue to warm the Earth, melt glaciers and expand ocean water, thus accelerating sea-level rise. Ultimately, rapidly rising seas could outstrip the positive effects of CO2 on the marshes that they have observed.

"Wetlands are some of the most specialized and valuable ecosystems in the world, not only to wildlife but humans as well," Megonigal said. "The sooner we can understand the effect global warming is having on them, the better we will be equipped to save them."

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>