Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key to Christmas Island’s red crab migration

30.08.2010
One of the most spectacular migrations on Earth is that of the Christmas Island red crab (Gecarcoidea natalis). Acknowledged as one of the wonders of the natural world, every year millions of the crabs simultaneously embark on a five-kilometre breeding migration. Now, scientists have discovered the key to their remarkable athletic feat.

A three-year project conducted by a team led by the late Professor Steve Morris from the University of Bristol’s School of Biological Sciences in collaboration with Professor Simon Webster from Bangor University, has discovered that hormonal changes play a significant role in enabling the crabs to make their journey.

Lucy Turner, a researcher at the University of Bristol, said: “During the wet season on the island, in November or December, and prompted by the arrival of the monsoon rains, millions of the crabs undertake an arduous breeding migration from their home on the high rainforest plateau to the ocean to reproduce. This is a journey of several kilometres - a long way when you are a relatively small land crab (less than 20cm long).

“Scientists have long been puzzled by what mechanisms enable the necessary changes to take place in the crabs’ physiology to allow this journey to take place, and how they make such a dramatic switch from hypoactivity to hyperactivity.”

The results of this project have proven that it is a Crustacean Hyperglycaemic Hormone (CHH) that enables the crabs to make the most efficient use of their stored energy in the muscles (glycogen) and its conversion to glucose to fuel the migration.

Professor Webster, an endocrinologist at Bangor University, added: "Their migration is extremely energetically demanding, since the crabs must walk several kilometres over a few days. During the non-migratory period, the crabs are relatively inactive and stay in their burrows on the floor of the rain forest, only emerging for a brief period at dawn, to feed. The behaviour change reflects a fundamental change in the metabolic status of the animal.

"Surprisingly, we found that hyperglycaemic hormone levels were lower in actively migrating crabs than those that were inactive during the dry season. However, studying the crabs running and walking after giving them glucose resolved the puzzle. During the dry season, forced activity resulted in a tremendous release of hormone, within two minutes, irrespective of whether glucose had been administered. However, in the wet season, the glucose completely prevented the release of the exercise-dependent hormone, showing that they were controlled by a negative feedback loop.

“Glucose levels were clearly regulating hormone release at this time. This made sense since it ensures that during migration, glucose is only released from glycogen stores when glucose levels are low, using the crabs’ precious reserves of glycogen, to ensure that they can complete the migration.”

The research, funded by a Natural Environment Research Council (NERC) grant, is published in the September issue of The Journal of Experimental Biology.

Please contact Lucy Turner for further information.

Further information:
The paper, entitled ‘The adaptive significance of crustacean hyperglycaemic hormone (CHH) in daily and seasonal migratory activities of the Christmas Island red crab Gecarcoidea natalis’, is dedicated to the memory of Professor Morris who died on 11 August 2009 before this work was completed.

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>