Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key to Christmas Island’s red crab migration

30.08.2010
One of the most spectacular migrations on Earth is that of the Christmas Island red crab (Gecarcoidea natalis). Acknowledged as one of the wonders of the natural world, every year millions of the crabs simultaneously embark on a five-kilometre breeding migration. Now, scientists have discovered the key to their remarkable athletic feat.

A three-year project conducted by a team led by the late Professor Steve Morris from the University of Bristol’s School of Biological Sciences in collaboration with Professor Simon Webster from Bangor University, has discovered that hormonal changes play a significant role in enabling the crabs to make their journey.

Lucy Turner, a researcher at the University of Bristol, said: “During the wet season on the island, in November or December, and prompted by the arrival of the monsoon rains, millions of the crabs undertake an arduous breeding migration from their home on the high rainforest plateau to the ocean to reproduce. This is a journey of several kilometres - a long way when you are a relatively small land crab (less than 20cm long).

“Scientists have long been puzzled by what mechanisms enable the necessary changes to take place in the crabs’ physiology to allow this journey to take place, and how they make such a dramatic switch from hypoactivity to hyperactivity.”

The results of this project have proven that it is a Crustacean Hyperglycaemic Hormone (CHH) that enables the crabs to make the most efficient use of their stored energy in the muscles (glycogen) and its conversion to glucose to fuel the migration.

Professor Webster, an endocrinologist at Bangor University, added: "Their migration is extremely energetically demanding, since the crabs must walk several kilometres over a few days. During the non-migratory period, the crabs are relatively inactive and stay in their burrows on the floor of the rain forest, only emerging for a brief period at dawn, to feed. The behaviour change reflects a fundamental change in the metabolic status of the animal.

"Surprisingly, we found that hyperglycaemic hormone levels were lower in actively migrating crabs than those that were inactive during the dry season. However, studying the crabs running and walking after giving them glucose resolved the puzzle. During the dry season, forced activity resulted in a tremendous release of hormone, within two minutes, irrespective of whether glucose had been administered. However, in the wet season, the glucose completely prevented the release of the exercise-dependent hormone, showing that they were controlled by a negative feedback loop.

“Glucose levels were clearly regulating hormone release at this time. This made sense since it ensures that during migration, glucose is only released from glycogen stores when glucose levels are low, using the crabs’ precious reserves of glycogen, to ensure that they can complete the migration.”

The research, funded by a Natural Environment Research Council (NERC) grant, is published in the September issue of The Journal of Experimental Biology.

Please contact Lucy Turner for further information.

Further information:
The paper, entitled ‘The adaptive significance of crustacean hyperglycaemic hormone (CHH) in daily and seasonal migratory activities of the Christmas Island red crab Gecarcoidea natalis’, is dedicated to the memory of Professor Morris who died on 11 August 2009 before this work was completed.

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>