Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists develop special cotton that collects water from fog

Chinese and Dutch scientists have developed a special surface modified cotton fabric that absorbs water from misty air for up to 340% of its own weight. The cotton then releases the collected water as temperature rises, a potential solution to provide water to the desert regions, for example for agricultural purposes.

Scientists at The Hong Kong Polytechnic University (PolyU) and Eindhoven University of Technology (TU/e) in the Netherlands have developed a special surface modified cotton fabric that absorbs exceptional amounts of water from misty air for up to 340% of its own weight.

What makes this coated-cotton so interesting is that the cotton releases the collected water as the temperature rises. This unique property makes of the coated cotton materials a potential solution to provide water to the desert regions, for example for agricultural purposes.

This ground-breaking research was done by Professor John Xin, Head and Chair Professor of PolyU's Institute of Textiles and Clothing (ITC); his PhD graduate Dr Hengrui Yang; and Dr Catarina Esteves at TU/e. The finding has been published on line and will go to print in the scientific journal Advanced Materials (Issue 8, February 2013). Dr Hengrui Yang was awarded the C C Lee Scholarship in 2008 for her doctorate degree and graduated in 2012. She has currently moved to Melbourne, Australia to pursue her research career.

The scientists grafted a layer of polymer called PNIPAAm to a common cotton fabric. At low temperatures, the cotton modified in this way has a sponge-like structure at microscopic level. Up to a temperature of 34°C it is highly hydrophilic, in other words it absorbs water strongly. Through this property the cotton can absorb 340 % of its own weight of water from misty air – compared with only 18% of water from bare cotton. When the environment temperature rises to 34°C or above, the material becomes hydrophobic or water-repellant and its structure becomes completely closed. Pure water absorbed at lower temperature will be released. The research revealed that the water absorbing and releasing cycle can be repeated many times.

The research team is inspired by nature for the development of fog-catching cotton fabric. They noted that beetles in desert areas can collect early morning dew and drink water from fogs, by capturing water droplets on its body which roll into its mouth. Similarly, some spiders capture humidity on their silk network. The innovative new fabric collects and releases water from misty environments simply as the night-and-day temperature changes. This interesting property implies that the material may potentially be suitable for providing water in deserts or mountain regions, where the air is often misty at night.

A further advantage is that the basic material – cotton fabric – is cheap and widely produced. The surface modification with PNIPAAm increases the cost only slightly by 12% which makes the application of the new fabric viable.

Currently fine-mesh 'fog harvesting nets' are already being used in some mountains and dry coastal areas, but they work on a different principle: they collect water from misty air by droplets that gradually form on the nets and fall to the ground or a suitable recipient. But that system depends on a strong air flow, wind. The new fabric developed by the research team works without the need of wind. In addition, new fabric can be laid directly where the water is needed, for example on cultivated soil.

On top of agricultural use, the research team is also considering other completely different applications such as camping tents that collect water at night, or sportswear that keeps perspiring athletes dry.

PolyU and TU/e scientists also intend to investigate further how they can optimize the quality of the new material. For example, they hope to increase the amount of water absorbed by the new system. Moreover, they also expect to be able to adjust the temperature at which the material changes from water-collecting to the water-releasing state, towards lower temperatures.

Press Contacts
Professor John Xin
Head and Chair Professor, Institute of Textile and Clothing

Tel: (852) 2766 6474

Wilfred Lai | Research asia research news
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>