Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop special cotton that collects water from fog

28.01.2013
Chinese and Dutch scientists have developed a special surface modified cotton fabric that absorbs water from misty air for up to 340% of its own weight. The cotton then releases the collected water as temperature rises, a potential solution to provide water to the desert regions, for example for agricultural purposes.

Scientists at The Hong Kong Polytechnic University (PolyU) and Eindhoven University of Technology (TU/e) in the Netherlands have developed a special surface modified cotton fabric that absorbs exceptional amounts of water from misty air for up to 340% of its own weight.

What makes this coated-cotton so interesting is that the cotton releases the collected water as the temperature rises. This unique property makes of the coated cotton materials a potential solution to provide water to the desert regions, for example for agricultural purposes.

This ground-breaking research was done by Professor John Xin, Head and Chair Professor of PolyU's Institute of Textiles and Clothing (ITC); his PhD graduate Dr Hengrui Yang; and Dr Catarina Esteves at TU/e. The finding has been published on line and will go to print in the scientific journal Advanced Materials (Issue 8, February 2013). Dr Hengrui Yang was awarded the C C Lee Scholarship in 2008 for her doctorate degree and graduated in 2012. She has currently moved to Melbourne, Australia to pursue her research career.

The scientists grafted a layer of polymer called PNIPAAm to a common cotton fabric. At low temperatures, the cotton modified in this way has a sponge-like structure at microscopic level. Up to a temperature of 34°C it is highly hydrophilic, in other words it absorbs water strongly. Through this property the cotton can absorb 340 % of its own weight of water from misty air – compared with only 18% of water from bare cotton. When the environment temperature rises to 34°C or above, the material becomes hydrophobic or water-repellant and its structure becomes completely closed. Pure water absorbed at lower temperature will be released. The research revealed that the water absorbing and releasing cycle can be repeated many times.

The research team is inspired by nature for the development of fog-catching cotton fabric. They noted that beetles in desert areas can collect early morning dew and drink water from fogs, by capturing water droplets on its body which roll into its mouth. Similarly, some spiders capture humidity on their silk network. The innovative new fabric collects and releases water from misty environments simply as the night-and-day temperature changes. This interesting property implies that the material may potentially be suitable for providing water in deserts or mountain regions, where the air is often misty at night.

A further advantage is that the basic material – cotton fabric – is cheap and widely produced. The surface modification with PNIPAAm increases the cost only slightly by 12% which makes the application of the new fabric viable.

Currently fine-mesh 'fog harvesting nets' are already being used in some mountains and dry coastal areas, but they work on a different principle: they collect water from misty air by droplets that gradually form on the nets and fall to the ground or a suitable recipient. But that system depends on a strong air flow, wind. The new fabric developed by the research team works without the need of wind. In addition, new fabric can be laid directly where the water is needed, for example on cultivated soil.

On top of agricultural use, the research team is also considering other completely different applications such as camping tents that collect water at night, or sportswear that keeps perspiring athletes dry.

PolyU and TU/e scientists also intend to investigate further how they can optimize the quality of the new material. For example, they hope to increase the amount of water absorbed by the new system. Moreover, they also expect to be able to adjust the temperature at which the material changes from water-collecting to the water-releasing state, towards lower temperatures.

Press Contacts
Professor John Xin
Head and Chair Professor, Institute of Textile and Clothing

Tel: (852) 2766 6474
Email: john.xin@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>