Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop special cotton that collects water from fog

28.01.2013
Chinese and Dutch scientists have developed a special surface modified cotton fabric that absorbs water from misty air for up to 340% of its own weight. The cotton then releases the collected water as temperature rises, a potential solution to provide water to the desert regions, for example for agricultural purposes.

Scientists at The Hong Kong Polytechnic University (PolyU) and Eindhoven University of Technology (TU/e) in the Netherlands have developed a special surface modified cotton fabric that absorbs exceptional amounts of water from misty air for up to 340% of its own weight.

What makes this coated-cotton so interesting is that the cotton releases the collected water as the temperature rises. This unique property makes of the coated cotton materials a potential solution to provide water to the desert regions, for example for agricultural purposes.

This ground-breaking research was done by Professor John Xin, Head and Chair Professor of PolyU's Institute of Textiles and Clothing (ITC); his PhD graduate Dr Hengrui Yang; and Dr Catarina Esteves at TU/e. The finding has been published on line and will go to print in the scientific journal Advanced Materials (Issue 8, February 2013). Dr Hengrui Yang was awarded the C C Lee Scholarship in 2008 for her doctorate degree and graduated in 2012. She has currently moved to Melbourne, Australia to pursue her research career.

The scientists grafted a layer of polymer called PNIPAAm to a common cotton fabric. At low temperatures, the cotton modified in this way has a sponge-like structure at microscopic level. Up to a temperature of 34°C it is highly hydrophilic, in other words it absorbs water strongly. Through this property the cotton can absorb 340 % of its own weight of water from misty air – compared with only 18% of water from bare cotton. When the environment temperature rises to 34°C or above, the material becomes hydrophobic or water-repellant and its structure becomes completely closed. Pure water absorbed at lower temperature will be released. The research revealed that the water absorbing and releasing cycle can be repeated many times.

The research team is inspired by nature for the development of fog-catching cotton fabric. They noted that beetles in desert areas can collect early morning dew and drink water from fogs, by capturing water droplets on its body which roll into its mouth. Similarly, some spiders capture humidity on their silk network. The innovative new fabric collects and releases water from misty environments simply as the night-and-day temperature changes. This interesting property implies that the material may potentially be suitable for providing water in deserts or mountain regions, where the air is often misty at night.

A further advantage is that the basic material – cotton fabric – is cheap and widely produced. The surface modification with PNIPAAm increases the cost only slightly by 12% which makes the application of the new fabric viable.

Currently fine-mesh 'fog harvesting nets' are already being used in some mountains and dry coastal areas, but they work on a different principle: they collect water from misty air by droplets that gradually form on the nets and fall to the ground or a suitable recipient. But that system depends on a strong air flow, wind. The new fabric developed by the research team works without the need of wind. In addition, new fabric can be laid directly where the water is needed, for example on cultivated soil.

On top of agricultural use, the research team is also considering other completely different applications such as camping tents that collect water at night, or sportswear that keeps perspiring athletes dry.

PolyU and TU/e scientists also intend to investigate further how they can optimize the quality of the new material. For example, they hope to increase the amount of water absorbed by the new system. Moreover, they also expect to be able to adjust the temperature at which the material changes from water-collecting to the water-releasing state, towards lower temperatures.

Press Contacts
Professor John Xin
Head and Chair Professor, Institute of Textile and Clothing

Tel: (852) 2766 6474
Email: john.xin@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Argonne Finds Butanol is Good for Boats
03.08.2015 | Argonne National Laboratory

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>