Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use Crowd-Sourcing to Help Map Global CO2 Emissions

15.05.2013
Climate science researchers from Arizona State University are launching a first-of-its-kind online “game” to better understand the sources of global warming gases. By engaging “citizen scientists,” the researchers hope to locate all the power plants around the world and quantify their carbon dioxide (CO2) emissions.

The game officially begins today and is housed on a website called “Ventus.” Ventus (the Latin word for wind) has a simple interface in which users enter basic information about the world’s power plants. By playing the game, people around the globe can help solve the climate change problem.

Kevin Gurney, an associate professor with ASU’s School of Life Sciences in the College of Liberal Arts and Sciences and lead scientist for the project, estimates there are as many as 30,000 power plants around the world burning fossil fuels. While a list of those facilities (created by the Center for Global Development) does exist, scientifically accurate information the researchers need to map each power plant’s location and carbon dioxide emissions – does not.

“Of all the fossil fuel CO2 emissions in the world, power plants account for almost half – so a pretty big portion of the climate change problem is due to the production of electricity everywhere in the world,” said Gurney, also a senior sustainability scientist with ASU’s Global Institute of Sustainability. “While you might imagine that we would know where they are and how much they’re emitting, it turns out we don’t. With the growth in countries such as China, India and Brazil, this lack of information poses challenges for both basic science and climate change solutions.”

"The Ventus project will empower citizen scientists with a simple tool that can truly make a difference in solving a significant climate change problem,” said ASU President Michael M. Crow. “With more accurate scientific information on every power plant in the world, international leaders in political and scientific fields can work together more effectively to address carbon dioxide emissions and climate change.”

Players who know the amount of CO2 emissions from a specific power plant have valuable information to use in the game. Additionally, Gurney and his team need three other pieces of information: the location of the facility (within a few hundred meters); the fuel used; and the amount of electricity produced. Players may enter all, or only a portion of the information. Researchers have started the process by entering approximately 25,000 power plants onto the map so people can see what already exists in the Ventus database.

“Ventus uses a Google Earth map which allows someone playing the game to drop pins on the power plants,” explained Darragh O’Keefe, the ASU research scientist who built the website. “Our logic is that for every power plant in the world, there are probably at least a dozen people who live near it, work at it, or know someone who works at it. With the proliferation of phones and GPS, it makes it pretty easy to locate things.” In addition, the Ventus website will be translated into several other languages to help facilitate worldwide participation.

Players will be free to look at all the data researchers currently have from many power plants around the world. Then, players can adjust that information or make edits to their previous entries. The game does not require registration to play, however, Gurney and his team will choose a winner who, at the end of the first year, has provided the greatest amount of usable information. To be considered for the competition, players must register.

While crowd sourcing a problem such as this one is unusual in the science community, Gurney’s team believes this innovative effort might work to solve a fairly profound problem. And, Gurney believes that most people around the world care about what happens to our environment.

“Through Ventus, people around the world can play an active role in helping to solve the climate change problem,” Gurney said. “We hope to gather a global team of people who want to make a difference – and do so, right now. The information we gather from Ventus can ultimately help determine what we as a society can do locally and globally about climate change.”

Gurney is also affiliated with the School of Geographical Sciences & Urban Planning. The Ventus project is funded by a National Science Foundation CAREER award.

Connect with Ventus: ventus.project.asu.edu; Facebook: www.facebook.com/VentusProject; Twitter: @ventus_project; Pinterest: pinterest.com/ventusproject/

Sandra Leander | Newswise
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>