Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use Crowd-Sourcing to Help Map Global CO2 Emissions

15.05.2013
Climate science researchers from Arizona State University are launching a first-of-its-kind online “game” to better understand the sources of global warming gases. By engaging “citizen scientists,” the researchers hope to locate all the power plants around the world and quantify their carbon dioxide (CO2) emissions.

The game officially begins today and is housed on a website called “Ventus.” Ventus (the Latin word for wind) has a simple interface in which users enter basic information about the world’s power plants. By playing the game, people around the globe can help solve the climate change problem.

Kevin Gurney, an associate professor with ASU’s School of Life Sciences in the College of Liberal Arts and Sciences and lead scientist for the project, estimates there are as many as 30,000 power plants around the world burning fossil fuels. While a list of those facilities (created by the Center for Global Development) does exist, scientifically accurate information the researchers need to map each power plant’s location and carbon dioxide emissions – does not.

“Of all the fossil fuel CO2 emissions in the world, power plants account for almost half – so a pretty big portion of the climate change problem is due to the production of electricity everywhere in the world,” said Gurney, also a senior sustainability scientist with ASU’s Global Institute of Sustainability. “While you might imagine that we would know where they are and how much they’re emitting, it turns out we don’t. With the growth in countries such as China, India and Brazil, this lack of information poses challenges for both basic science and climate change solutions.”

"The Ventus project will empower citizen scientists with a simple tool that can truly make a difference in solving a significant climate change problem,” said ASU President Michael M. Crow. “With more accurate scientific information on every power plant in the world, international leaders in political and scientific fields can work together more effectively to address carbon dioxide emissions and climate change.”

Players who know the amount of CO2 emissions from a specific power plant have valuable information to use in the game. Additionally, Gurney and his team need three other pieces of information: the location of the facility (within a few hundred meters); the fuel used; and the amount of electricity produced. Players may enter all, or only a portion of the information. Researchers have started the process by entering approximately 25,000 power plants onto the map so people can see what already exists in the Ventus database.

“Ventus uses a Google Earth map which allows someone playing the game to drop pins on the power plants,” explained Darragh O’Keefe, the ASU research scientist who built the website. “Our logic is that for every power plant in the world, there are probably at least a dozen people who live near it, work at it, or know someone who works at it. With the proliferation of phones and GPS, it makes it pretty easy to locate things.” In addition, the Ventus website will be translated into several other languages to help facilitate worldwide participation.

Players will be free to look at all the data researchers currently have from many power plants around the world. Then, players can adjust that information or make edits to their previous entries. The game does not require registration to play, however, Gurney and his team will choose a winner who, at the end of the first year, has provided the greatest amount of usable information. To be considered for the competition, players must register.

While crowd sourcing a problem such as this one is unusual in the science community, Gurney’s team believes this innovative effort might work to solve a fairly profound problem. And, Gurney believes that most people around the world care about what happens to our environment.

“Through Ventus, people around the world can play an active role in helping to solve the climate change problem,” Gurney said. “We hope to gather a global team of people who want to make a difference – and do so, right now. The information we gather from Ventus can ultimately help determine what we as a society can do locally and globally about climate change.”

Gurney is also affiliated with the School of Geographical Sciences & Urban Planning. The Ventus project is funded by a National Science Foundation CAREER award.

Connect with Ventus: ventus.project.asu.edu; Facebook: www.facebook.com/VentusProject; Twitter: @ventus_project; Pinterest: pinterest.com/ventusproject/

Sandra Leander | Newswise
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>