Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Use Crowd-Sourcing to Help Map Global CO2 Emissions

Climate science researchers from Arizona State University are launching a first-of-its-kind online “game” to better understand the sources of global warming gases. By engaging “citizen scientists,” the researchers hope to locate all the power plants around the world and quantify their carbon dioxide (CO2) emissions.

The game officially begins today and is housed on a website called “Ventus.” Ventus (the Latin word for wind) has a simple interface in which users enter basic information about the world’s power plants. By playing the game, people around the globe can help solve the climate change problem.

Kevin Gurney, an associate professor with ASU’s School of Life Sciences in the College of Liberal Arts and Sciences and lead scientist for the project, estimates there are as many as 30,000 power plants around the world burning fossil fuels. While a list of those facilities (created by the Center for Global Development) does exist, scientifically accurate information the researchers need to map each power plant’s location and carbon dioxide emissions – does not.

“Of all the fossil fuel CO2 emissions in the world, power plants account for almost half – so a pretty big portion of the climate change problem is due to the production of electricity everywhere in the world,” said Gurney, also a senior sustainability scientist with ASU’s Global Institute of Sustainability. “While you might imagine that we would know where they are and how much they’re emitting, it turns out we don’t. With the growth in countries such as China, India and Brazil, this lack of information poses challenges for both basic science and climate change solutions.”

"The Ventus project will empower citizen scientists with a simple tool that can truly make a difference in solving a significant climate change problem,” said ASU President Michael M. Crow. “With more accurate scientific information on every power plant in the world, international leaders in political and scientific fields can work together more effectively to address carbon dioxide emissions and climate change.”

Players who know the amount of CO2 emissions from a specific power plant have valuable information to use in the game. Additionally, Gurney and his team need three other pieces of information: the location of the facility (within a few hundred meters); the fuel used; and the amount of electricity produced. Players may enter all, or only a portion of the information. Researchers have started the process by entering approximately 25,000 power plants onto the map so people can see what already exists in the Ventus database.

“Ventus uses a Google Earth map which allows someone playing the game to drop pins on the power plants,” explained Darragh O’Keefe, the ASU research scientist who built the website. “Our logic is that for every power plant in the world, there are probably at least a dozen people who live near it, work at it, or know someone who works at it. With the proliferation of phones and GPS, it makes it pretty easy to locate things.” In addition, the Ventus website will be translated into several other languages to help facilitate worldwide participation.

Players will be free to look at all the data researchers currently have from many power plants around the world. Then, players can adjust that information or make edits to their previous entries. The game does not require registration to play, however, Gurney and his team will choose a winner who, at the end of the first year, has provided the greatest amount of usable information. To be considered for the competition, players must register.

While crowd sourcing a problem such as this one is unusual in the science community, Gurney’s team believes this innovative effort might work to solve a fairly profound problem. And, Gurney believes that most people around the world care about what happens to our environment.

“Through Ventus, people around the world can play an active role in helping to solve the climate change problem,” Gurney said. “We hope to gather a global team of people who want to make a difference – and do so, right now. The information we gather from Ventus can ultimately help determine what we as a society can do locally and globally about climate change.”

Gurney is also affiliated with the School of Geographical Sciences & Urban Planning. The Ventus project is funded by a National Science Foundation CAREER award.

Connect with Ventus:; Facebook:; Twitter: @ventus_project; Pinterest:

Sandra Leander | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>