Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists complete first-ever emperor penguin count from space

16.04.2012
Results provide an important benchmark for monitoring the impact of environmental change

There are twice as many emperor penguins in Antarctica than was previously thought, according to a new study released today by an international team of researchers using high-resolution satellite mapping technology. This first-ever count of an entire species from space provides an important benchmark for monitoring the impact of environmental change on the population of this iconic bird.

Scientists from the University of Minnesota Polar Geospatial Center co-authored the research with partners from the British Antarctic Survey. The research is published today in the journal PLoS ONE. In the journal, the scientists describe how they used Very High Resolution (VHR) satellite images to estimate the number of penguins at each colony around the coastline of Antarctica. Using a technique known as pan-sharpening to increase the resolution of the satellite imagery, the science teams were able to differentiate between birds, ice, shadow and penguin poo (guano).

They then used ground counts and aerial photography to calibrate the analysis. These birds breed in areas that are very difficult to study because they are remote and often inaccessible with temperatures as low as -58°F (-50°C).

Lead author and geographer Peter Fretwell at the British Antarctic Survey (BAS), which is funded by the UK's Natural Environment Research Council, said the research findings are groundbreaking.

"We are delighted to be able to locate and identify such a large number of emperor penguins," Fretwell said. "We counted 595,000 birds, which is almost double the previous estimates of 270,000 to 350,000 birds. This is the first comprehensive census of a species taken from space."

On the ice, emperor penguins with their black and white plumage stand out against the snow and colonies are clearly visible on satellite imagery. This allowed the team to analyze 44 emperor penguin colonies around the coast of Antarctica, with seven previously unknown.

"The methods we used are an enormous step forward in Antarctic ecology because we can conduct research safely and efficiently with little environmental impact, and determine estimates of an entire penguin population," said co-author Michelle LaRue from the University of Minnesota Polar Geospatial Center, which is funded by the U.S. National Science Foundation and is part of the university's College of Science and Engineering.

"The implications of this study are far-reaching," LaRue added. "We now have a cost-effective way to apply our methods to other poorly-understood species in the Antarctic, to strengthen on-going field research, and to provide accurate information for international conservation efforts."

BAS biologist Phil Trathan and co-author of the study noted the impact this research could have on the changing environment.

"Current research suggests that emperor penguin colonies will be seriously affected by climate change," Trathan said. "An accurate continent-wide census that can be easily repeated on a regular basis will help us monitor more accurately the impacts of future change on this iconic species."

Scientists are concerned that in some regions of Antarctica, earlier spring warming is leading to loss of sea ice habitat for emperor penguins, making their northerly colonies more vulnerable to further climate change.

"Whilst current research leads us to expect important declines in the number of emperor penguins over the next century, the effects of warming around Antarctica are regional and uneven," Trathan said. "In the future we anticipate that the more southerly colonies should remain, making these important sites for further research and protection."

This research is a collaboration between British Antarctic Survey, University of Minnesota/National Science Foundation, Scripps Institution of Oceanography and the Australian Antarctic Division.

To read the entire research paper in the PLoS ONE journal, visit http://z.umn.edu/penguin12.

Related Links

Watch a video of Michelle LaRue discussing the research: http://www.nsf.gov/news/news_videos.jsp?cntn_id=123854&media_id=72238&org=NSF

Michelle LaRue bio: http://www.agic.umn.edu/people/larue

U of M Polar Geospatial Center: http://www.agic.umn.edu/

Feature story: 'The emperor's new close-up': http://www1.umn.edu/news/features/2012/UR_CONTENT_381718.html

Department of Earth Sciences: http://www.geo.umn.edu/

Department of Fisheries, Wildlife and Conservation Biology: http://fwcb.cfans.umn.edu/

Matt Hodson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>