Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists complete first-ever emperor penguin count from space

16.04.2012
Results provide an important benchmark for monitoring the impact of environmental change

There are twice as many emperor penguins in Antarctica than was previously thought, according to a new study released today by an international team of researchers using high-resolution satellite mapping technology. This first-ever count of an entire species from space provides an important benchmark for monitoring the impact of environmental change on the population of this iconic bird.

Scientists from the University of Minnesota Polar Geospatial Center co-authored the research with partners from the British Antarctic Survey. The research is published today in the journal PLoS ONE. In the journal, the scientists describe how they used Very High Resolution (VHR) satellite images to estimate the number of penguins at each colony around the coastline of Antarctica. Using a technique known as pan-sharpening to increase the resolution of the satellite imagery, the science teams were able to differentiate between birds, ice, shadow and penguin poo (guano).

They then used ground counts and aerial photography to calibrate the analysis. These birds breed in areas that are very difficult to study because they are remote and often inaccessible with temperatures as low as -58°F (-50°C).

Lead author and geographer Peter Fretwell at the British Antarctic Survey (BAS), which is funded by the UK's Natural Environment Research Council, said the research findings are groundbreaking.

"We are delighted to be able to locate and identify such a large number of emperor penguins," Fretwell said. "We counted 595,000 birds, which is almost double the previous estimates of 270,000 to 350,000 birds. This is the first comprehensive census of a species taken from space."

On the ice, emperor penguins with their black and white plumage stand out against the snow and colonies are clearly visible on satellite imagery. This allowed the team to analyze 44 emperor penguin colonies around the coast of Antarctica, with seven previously unknown.

"The methods we used are an enormous step forward in Antarctic ecology because we can conduct research safely and efficiently with little environmental impact, and determine estimates of an entire penguin population," said co-author Michelle LaRue from the University of Minnesota Polar Geospatial Center, which is funded by the U.S. National Science Foundation and is part of the university's College of Science and Engineering.

"The implications of this study are far-reaching," LaRue added. "We now have a cost-effective way to apply our methods to other poorly-understood species in the Antarctic, to strengthen on-going field research, and to provide accurate information for international conservation efforts."

BAS biologist Phil Trathan and co-author of the study noted the impact this research could have on the changing environment.

"Current research suggests that emperor penguin colonies will be seriously affected by climate change," Trathan said. "An accurate continent-wide census that can be easily repeated on a regular basis will help us monitor more accurately the impacts of future change on this iconic species."

Scientists are concerned that in some regions of Antarctica, earlier spring warming is leading to loss of sea ice habitat for emperor penguins, making their northerly colonies more vulnerable to further climate change.

"Whilst current research leads us to expect important declines in the number of emperor penguins over the next century, the effects of warming around Antarctica are regional and uneven," Trathan said. "In the future we anticipate that the more southerly colonies should remain, making these important sites for further research and protection."

This research is a collaboration between British Antarctic Survey, University of Minnesota/National Science Foundation, Scripps Institution of Oceanography and the Australian Antarctic Division.

To read the entire research paper in the PLoS ONE journal, visit http://z.umn.edu/penguin12.

Related Links

Watch a video of Michelle LaRue discussing the research: http://www.nsf.gov/news/news_videos.jsp?cntn_id=123854&media_id=72238&org=NSF

Michelle LaRue bio: http://www.agic.umn.edu/people/larue

U of M Polar Geospatial Center: http://www.agic.umn.edu/

Feature story: 'The emperor's new close-up': http://www1.umn.edu/news/features/2012/UR_CONTENT_381718.html

Department of Earth Sciences: http://www.geo.umn.edu/

Department of Fisheries, Wildlife and Conservation Biology: http://fwcb.cfans.umn.edu/

Matt Hodson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>